

The Critical Importance of BSRN to Quantify the Uncertainties and Improve the NASA/GEWEX SRB Fluxes and Resulting Impacts

15th BSRN Scientific Review and Workshop 16-20 July 2018

Paul W. Stackhouse, Jr. – NASA LaRC, Hampton, VA Taiping Zhang, Stephen J. Cox, and J. Colleen Mikovitz, – SSAI, Hampton, VA

SRB Overview

SRB Objectives:

- **Fuse observations** of clouds, aerosols, atmospheric constituents, and surface properties consistently in time and space to estimate the key components of the surface and TOA radiative fluxes for long-time periods (exceeding 30 years)
- **Explore** these data sets to describe the longterm mean & variability of the surface and TOA radiative budgets and their dependencies
- **Provide** these data products to scientific and applied science users
- Collaborate with other global GEWEX projects to improve integration and promote the understanding of these energy components in the context global heat and water budgets

NASA GEWEX Surface Radiation Budget

Home	Documentation	Data	Education and Applications	Related Activities

NASA GEWEX Surface Radiation Budget

- Global energy balanced with uncertainties
- EBAF assumed to adjust TOA net

- Precipitation assumed to be higher than GPCP
- Surface imbalance +/- 17 W m⁻²

Stephens et al (2012, Nature GeoScience, 23 September 2012)

Examples of SRB Usage

Regional SRB Projects and Climatology

- Southern Ocean (Luo et al., '15)
- Specific geostationary satellites (Albarelo et al,. '15, Müller et al., '15, Posselt et al., '14, Zhang et al., '14)
- Specific continental-scale areas (Cattiaux et al. '15, Gianotti and Eltahir '14, Pessacg et al., '14, Gao et al., '15, Wang et al., '14, Zhang & Liang, '14)
- Mediterranean basin study (Pyrina et al., '15 Nabat et al, '14)
- Alaska (Ueyama et al., '14)

Global Earth Radiative Budget and Clouds

- Atmospheric energy budgets and variability (Ma et al., '15, Stephens et al., '15, Zhang et al., '15)
- CERES comparisons (Kato et al., '13, Rutan et al., '15, Pan et al., '15)
- Global surface albedo estimations: Qu et al., '15, He et al., '14)
- Ocean heat budget (Wong et al., '14)

Water and Energy Cycle

- Closure studies (Robertson et al., '14)
- Monsoon (Hu and Duan, '15, Kothe et al., '14)
- Global evapotranspiration (Long et al., '14, Yao et al., '14)
- North China drought (Zhang et al., '15)
- River basin water and energy balance (Tatsumi and Yamashiki, '15, Yang et al., '15)
- Tanzania (Armanios and Fisher '14)
- Global soil moisture/precipitation: Guillod et al., '15)
- Radiation/energy balance of snow (Lapo et al., '15)

Interdisciplinary Research Projects

- Solar cooking in Sahel (Newton et al., '14)
- Solar energy (Mazurek '14)
- Global gross primary production (Cai et al., '14)
- Global lake surface temperatures (Sharma et al., '15)
- Agricultural modeling (Ruane et al., '15)

Energy Applied Science

- Solar panel resource and citing
- Solar hot water heating
- Solar street lighting
- Solar walls
- Building energy modeling

Agricultural Usage

- Crop modeling
- Land use
- Irrigation modeling

Human and Animal Disease

- Bipolar disease onset
- Infestation vectors

(Spatial Resolution: 1° x 1°; 7/83 – 12/07)

Data Types	Model Name	Temporal Resolution	Parameters	
	GEWEX SW (Pinker/Laszlo)	3-hourly, Monthly Averaged 3- hourly, Daily and Monthly	All-sky: Surface down, up, PAR down; TOA Down, Up	
SW	(v3.0)	Averaged (UTC and local sun time)	Clear-Sky: Surface Down, Up; TOA Up	
	LPSA (Staylor/	Daily, Monthly	All-sky: Surface Down, Net, and Albedo	
	Gupta) (V3.0)		Clear-sky: Surface Down	
LW	GEWEX LW (Fu/Liou/ Stackhouse) (v3.1)	3-hourly, Monthly Averaged 3- hourly, Daily and Monthly Averaged	All-sky and clear-sky: TOA up; Surface Up and Down	
	LPLA (Gupta) (v3.0)	3-hourly, Monthly Averaged 3- hourly, Daily and Monthly Averaged	All-sky Surface Downward, Net; Cloud Radiative Forcing	
Input Property	CLDPROPS	3-Hourly	Surface emissivity, skin temperature, atmospheric profile; cloud phase, fraction, optical depth and LWC	

Note: The LPSA and LPLA algorithms are also used in CERES Surface-Only

SRB(V3.0)-BSRN SW Daily and Monthly Mean Comparisons

Large Ensemble (all times, all sites)

Site-by-site Ensemble (all times, each sites)

19 July 2018

SRB(V3.0)-BSRN LW Daily and Monthly Mean Comparisons

GEWEX SRB(V3.0)-BSRN Comparison

Bias/(RMS) from 1992-01 to 2007-12

Model	3-Hourly (W m ⁻²)	Daily (W m ⁻²)	3-Hourly- Monthly (W m ⁻²)	Monthly (W m ⁻²)
GEWEX SRB	-6.99	-3.58	- <mark>8.8</mark> 1	-5.22
GSW(V3.0)	(88.32)	(35.50)	(47.43)	(23.34)
GEWEX SRB	1.25	1.13	0.89	0.97
GLW(V3.0)	(30.50)	(22.16)	(13.75)	(11.18)

BSRN data from http://bsrn.awi.de/ as of 2011-08-22.

BSRN measurements must be of consistent qualtity on a site by site basis to enable this sort of analysis

GEWEX

19 July 2018

Boreal

Polor

Ternperate

Temperate

Polor

GEW/EX

19 July 2018

BSRN Differences by Climate Type

SW Differences

LW Differences

Long-Term Consistency Critical

GEWEX

Trend of Deseasonalized Ensemble Average of 5 BSRN Sites in Comparison with Its GEWEX SRB GSW(V3.0) Counterpart from 1993-01 to 2007-12

ISCCP HX is being reprocessed (production based at NCEI)

- Uses all 10 km pixels with no 34 subsampling
- Revised calibration using MODIS and Heidinger (et al)⁵
- Pixel 3-hourly, 1x1 3-hourly, and 1x1 monthly data products
- nnHIRS: Gridded & filled data set using T, q retrieval (Shi et al.)
- New surface type maps
- Revised & extended snow/ice
- Extended O3

ISCCP HX GOEA Visible Radiance Jun 01, 2001, 18Z

Genex

SRB (R4) Annual Averages Fluxes for 2007

Global annual averaged fluxes for 2007

Flux Component	Rel 3.0	Rel 4_xi (NEW algorithm, NEW inputs – HXS V01)	CERES Syn1Deg (Ed. 4A)	CERES EBAF (Ed 4.0)
Surface total down	186.1	184.7	187.8	186.5
Surface down diffuse	104.1	100.0	105.7	
Surface clear-sky down	247.6	239.8	242.5	244.1
Surface pristine-sky down	258.5	252.1	253.0	
Surface albedo	0.131	0.133	0.136	0.143
Surface net	163.5	161.8	166.9	164.6
Surface Cloud Radiative Effect	-61.5	-55.1	-54.6	-57.6
TOA Up	104.4	100.6	99.6	99.0

Annual SW Surface Down Fluxes for 2007

SW Surface Down Validation

Version	Bias	RMS	ρ	σ	μ_{GSW}^{*}	Ν
GSW(V3.0)	-8.45	24.05	0.9717	22.54	164.78	460
GSW(R4.0 iota)	-6.28	20.38	0.9793	19.41	166.95	460
GSW(V4.0_nu)	-5.82	19.79	0.9803	18.93	167.41	460
GSW(V4.0_omnicr on)	-4.95	18.63	0.9822	17.98	167.57	467
CERES EBAF(E2.8)	-4.79	16.52	0.9863	15.83	168.44	460
CERES EBAF(E4.0)	-5.07	16.26	0.9868	15.46	167.44	467
CERES SYN1deg(V3A)	-2.13	16.11	0.9858	15.98	171.11	460
CERES SYN1deg(V4A)	-5.27	15.97	0.9875	15.09	167.25	467

GEH/EX

GEWEX SW vs BSRN

Long-term Variability: Ensemble Anomalies

Long-term Variability: Ensemble Anomalies

Annual Cycle by Site: Surface SW (Rel 4) Bias

Annual Cycle by Site: SW (Rel 4) & CERES Bias CCU/CX

Annual Average LW Fluxes for 2007

	Parameter	Rel 3.1 GEOS- 4/DX	Rel. 4 nnHIRS/HX	CERES SYN 1- deg Ed. 4A	CERES EBAF Ed. 4
	All-sky Sfc Down	344.8 (404.5)	347.6 (411.0)	346.9 (406.3)	344.8 (405.9)
Global	Clear-sky Sfc Down	311.4 (383.4)*	316.3 (392.0)	318.1 (390.5)	314.2 (388.3)
(tropical)	Pristine-sky Sfc Dn		314.9 (390.6)	315.9 (389.0)	
annuai	All-sky Sfc Up	398.3 (459.1)	400.4 (461.0)	397.8 (457.8)	398.6 (458.1)
averaged	All-sky Sfc Net	-53.5 (-54.6)	-52.7 (-50.0)	-50.8 (-51.7)	-53.8 (-52.2)
TIUXES for	Sfc CRE	33.4 (21.1)	31.3 (19.0)	28.8 (15.7)	30.6 (17.5)
2007	OLR	238.3 (256.6)	235.1 (254.5)	238.6 (255.7)	240.56 (257.4)
	Clear OLR	265.3 (285.9)*	263.8 (285.7)	262.5 (282.8)	268.4 (290.6)
	Pristine-sky OLR		265.1 (287.0)	263.2 (284.1)	
	TOA CRE	-27.0 (-29.3)	-28.7 (-31.2)	-23.8 (-27.1)	-27.8 (-33.2)

19 July 2018

GEWEX Annual LW Surface Down Fluxes for 2007

-35 -30 -25 -20 -15-10 -5

SRB Release 4, All-sky LW Down at Surface, 2007 Average

SRB Rel. 4 - SYN Ed. 4A, All-sky LW Down at Surface, 2007 Ave

R4-CERES Syn1Deg .. Ed4A

SRB Rel. 4 - Rel. 3.1, All-sky LW Down at Sfc, 2007 Ave 90N R4 – R3 305 60S

> -2.5 SRB Rel. 4 - EBAF Ed. 4, All-sky LW Down at Surface, 2007 Ave

2.5

10 15 20 25

Monthly GLW vs BSRN measurements

Version	Bias	RMS	ρ	σ	μ_{GLW}	Ν
V3.1	1.49	12.30	0.9882	12.23	308.08	464
V4.0_g4_g4tsclrskin_dxcld	4.88	13.75	0.9870	12.86	311.46	464
V4.0_merra2_comskin_betacld	5.21	13.78	0.9871	12.77	311.79	464
GLW 4 IP (nnHIRS, HXS v1, PLST, SSST)	3.94	16.38	0.9813	15.92	310.53	464
CERES EBAF(E2.8)	1.01	10.02	0.9922	9.98	308.12	464
CERES EBAF(E4.0)	0.76	10.00	0.9922	9.98	307.87	464
CERES SYN1deg(V3A)	-3.66	10.29	0.9927	9.62	303.44	464
CERES SYN1deg(V4A)	2.85	10.28	0.9923	9.89	309.96	464

GEWEX

19 July 2018

Monthly GLW vs BSRN measurements GCU/CX

GLW Annual Differences by Site

GEWEX

Ocean Buoy SW Validation (PMEL)

Version	Bias	RMS	ρ	σ	μ	Ν
GSW (V3.0)	7.76	17.02	0.9132	15.20	250.88	138
GSW(V4.0_nu)	0.47	14.29	0.9225	14.34	243.60	138
GSW (V4.0-xi)	-0.02	14.40	0.9216	14.45	243.11	138
GSW(V4.0_omicron)	-0.52	15.32	0.9114	15.37	242.59	138
CERES EBAF(E4.0)	1.97	12.34	0.9451	12.23	245.10	138
CERES SYN1deg(V4A)	-0.86	11.80	0.9506	11.81	242.26	138

GEH/EX

Monthly Averaged GLW vs. Buoy Measurements

Version	Bias	RMS	ρ	σ	μ_{DATA}	Ν
V3.1	-0.07	6.17	0.9342	6.23	406.88	50
GLW 4 IP (nnHIRS, HXS v1, PLST, SSST)	8.04	10.91	0.9182	7.45	414.99	50
CERES EBAF(E4.0)	0.99	3.80	0.9581	3.70	407.94	50
CERES SYN1deg(V4A)	0.85	3.70	0.9567	3.64	407.80	50

High Quality SRB Leads to Societal Benefits via POWER Web

Portal (GIS-enabled)

- Increased spatial/temporal resolutions: SRB, CERES FLASHFLUX – Solar, GMAO MERRA-2/GEOS 5.12.4; ½ x ½ Spatial resolution, Near Real Time Daily Time Series, 30 Year Climatological Averages
- Complete API service (data order using URL) allows for data to be repeatedly requested using a script or from within a user analysis program
- New capabilities providing data in ASCII, CSV, geoJSON, NetCDF4, ICASA, GeoTiff and ArcGIS Image Services

Energy Related Building Climate Zone & Design Conditions Climate Indicators & Data Products for Future National Climate Assessments

Focuses upon expanding and improving the provision of building climate zones, climate design and other data parameters relevant to energy usage and efficiency in geospatial formats more accessible to the building and renewable energy industries

Energy Related Building Zones & Design Conditions

GEH/EX

• SRB and BSRN:

- BSRN critical for validation of products at various temporal averages
- BSRN distribution of sites critical for improved assessment for physics of given regions; ensemble analysis by climate type reveals characteristic features
- BSRN longevity critical long-term evaluation and assessment

• GEWEX SRB Rel 4-IP

- HXS cloud rendering testing/assessment ongoing; cloud base biases, cloud detection over ice surfaces
- Re-assess new sources of land/ocean PBL temp/hum; contrast with nnHIRS
- Produce 15 year 1x1 data set 1998-2012 to maximize overlap with CERES and NASA NEWS data sets for error and uncertainty assessment
- Long-term goal: Re-process 30+ years at ½ x ½ resolution
- Use BSRN and other measurements to provide data quality information

SRB Web Site and Data Sources

http://gewex-srb.larc.nasa.gov

1. Atmospheric Science Data Center (main archive):

https://eosweb.larc.nasa.gov/project/srb/srb_table

2. POWER Applied Science (climatological, monthly, daily; GIS formats)

https://power.larc.nasa.gov

Genex

The Global Energy and Water Exchanges (GEWEX) is an integrated program of research, observations, and science activities with the goal of providing data sets to support accurate predictions of global and regional climate change. Research in the areas of Earth radiation budget, hydrometeorology, and modeling/prediction contribute to meeting the goal of GEWEX.

The NASA/GEWEX SRB project is a major component of the GEWEX radiation research. The objective of the NASA/GEWEX SRB project is to determine surface, top-of-atmosphere (TOA), and atmospheric shortwave (SW) and longwave (LW) radiative fluxes with the precision needed to predict transient climate variations and decadal-to-centennial climate trends.

- Introduction: WCRP, GEWEX, ISCCP, SRB and BSRN
- GEWEX SRB Overview
 - Old to New
- BSRN Usage
 - Ensemble long-term
 - Ensemble time series
 - Regional/Site
- Surface measurement needs:
 - Pygeometer standard?
 - Climate type distribution
 - Longer time series
 - Ocean buoy standards?

Ocean Buoy SW Validation (PMEL)

Version	Bias	RMS	ρ	σ	μ	Ν
GSW (V3.0)	7.76	17.02	0.9132	15.20	250.88	138
GSW(V4.0_nu)	0.47	14.29	0.9225	14.34	243.60	138
GSW (V4.0-xi)	-0.02	14.40	0.9216	14.45	243.11	138
GSW(V4.0_omicron)	-0.52	15.32	0.9114	15.37	242.59	138
CERES EBAF(E4.0)	1.97	12.34	0.9451	12.23	245.10	138
CERES SYN1deg(V4A)	-0.86	11.80	0.9506	11.81	242.26	138

GEH/EX

SW Land & Ocean Validation

BSRN Land (2001-2007)

(from Weller & Yu, WHOI)

BSRN Workship 2018

19 July 2018

(Spatial Resolution: 1°x1°, 7/98–12/12; ½°x½°, 7/83–12/15ff)

GEH/EX

Data Types	Model Name	Temporal Resolution	Parameters	
SW	GEWEX SW	3-hourly, Monthly Averaged 3-hourly, Daily and Monthly	All-sky: Surface down, up, down direct and diffuse, PAR down, direct, diffuse; TOA Down, Up	
3	(v4.0)	Averaged (UTC and local sun time)	Clear-Sky: Surface Down, Up; PAR down; TOA Up	
			Pristine-sky: Surface down, up; TOA up	
	GEWEX LW (Fu/Liou/ Stackbouse)	3-hourly, Monthly Averaged	All-sky: Surface Up and Down; TOA up	
LW		3-hourly, Daily and Monthly	Clear-sky: Surface Up and Down; TOA up	
	(v4.0)	Averaged	Pristine-sky: Surface Up and Down; TOA up	
Input Properties	Cloud, Aerosol and Surface Properties	3-Hourly	Surface emissivity, skin temperature, atmospheric profile; cloud phase, fraction, optical depth and LWC	

SRB (Rel 4) Integrated Product Data Flow

Annual Averaged Input Differences

GEWEX

Long-Term Consistency

4389 Available Buoy-Months of PMEL Buoy Data from 2000-01 to 2017-10

GSW vs. BSRN (1998 - 2009)

GEWEX

Measurements screened for inconsistent sites using Foltz et al., 2013

SRB R4 LW – EBAF Ed4 LW CRE

SRB R4 LW CRE

Annual Cycle Surface SW Cloud Radiative Effect

SW R4 Sfc CRE

SW R4 – EBAF SW Ed4 Sfc CRE

New POWER/SSE (v8, GIS) Expands

Accessibility with Web Services

Website is a Responsive Platform for Desktop, Tablet, and Smartphone

> Updated data sets with future updates more easily implemented, documented and validated

POWER web site now in live: https://power.larc.nasa.gov

SSE User History (Climatology only)

Last 12 months: averaged 271K data orders and 19K users per month

SSE is by far the highest used data at ASDC", ASDC User Services 🔬

GEH/EX

POWER (old SSE) Users from All Over the World Control of the World Contr

POWER-GIS Beta Usage Distribution Q1 2018

POWER/SSE Monthly Data Request Metrics for FY2018 (POWER-GIS Beta/v1 on-line Dec 2017)

Number of API and/or Data Requests/Month	Q4 2017	Q1 2018	Apr/May 2018
Current SSE (on EOSWEB, via POWER)	259,483	208,498	285,175
SE-GIS App (on ASDC-GIS, via POWER)	413	422	817
OWER Old Website	770	981	1,065
POWER New website + DAV (beta)	43	784	2,611
OWER API (Beta) total URL hits	13,026	46,902	103,184
Total Agroclimatology Community	8,888	5,622	25,084
Total Surface Meteorology and Solar Energy			
(SSE) Community	3,544	35,983	62,302
Total Sustainable Buildings	594	5,296	15,674
otal Monthly Data Requests All Sites	286,762	304,488	495,910

Transitioning from POWER/SSE old to POWER-GIS