Evaluation of Satellite Albedo Products over BSRN Sites

Zhuosen Wang, Miguel Román, Crystal Schaaf, Angela Erb, Zhan Li, Maciej Stachura, Joel McCorkel

Albedo Validation Protocol

The CEOS WGCV Land Product Validation (LPV) subgroup is designated to play a key coordination role, and to lend the expertise required to validate global surface albedo measurements as identified in GCOS-138.

NA SA

Product	Temporal Coverage	Spatial Scale	Temporal Scale
MERIS/SPOT-VGT	1998-2011	0.05deg or 0.5deg	8-day
AVHRR	1982-2015	0.25deg	Monthly, pentad (5-day)
MODIS	2000 - present	0.5km, 0.05 deg, 30arc sec	Daily
VEGETATION	1999-2013	1 km	10-day
GLASS (MODIS, AVHRR)	1981-2010	1 km, 0.05deg	8-day
MISR	2000 - present	1.1 km, 0.5 deg	Day, Mon, Qtr, Annual (global repeat 9 days)
VIIRS (NOAA)	2011-present	1km	Daily
CERES	2000 - 2016	20km, 1 deg	Instantaneous, 3hrs, monthly
MSG SEVERI	2005 - present	3 km (nadir)	Daily, 10-day
POLDER	1996-97(P1)	6 km	10-day
Meteosat	1981-2011	3 km (nadir)	10-day

E

NASA

Surface Albedo Validation Strategy

- In-situ tower-based validation
- Satellite products inter-comparison
- Upscaling high spatial resolution airborne/spaceborne albedo

Stage	Description
Stage 1	Product accuracy is assessed from a small (typically < 30) set of locations and
Validation	time periods by comparison with in-situ or other suitable reference data.
Stage 2 Validation	Product accuracy is estimated over a significant set of locations and time periods by comparison with reference in situ or other suitable reference data. The spatial and temporal consistency of the product and with similar products has been evaluated over globally representative locations and time periods. Results are published in the peer-reviewed literature.
Stage 3 Validation	Uncertainties in the product and its associated structure are well quantified from comparison with reference in situ or other suitable reference data. Uncertainties are characterised in a statistically robust way over multiple locations and time periods representing global conditions . Spatial and temporal consistency of the product and consistency with similar products has been evaluated over globally representative locations and periods. Results are published in the peer-reviewed literature.
Stage 4	Validation results for stage 3 are systematically updated when
Validation	new product versions are released and as the time-series expands.

NASA

In-situ tower-based validation

NASA

In-situ Reference Sites

FLUXNET 2015 sites (http://fluxnet.fluxdata.org/about/regionalnetworks/)

BSRN sites

NASA

CarboeuropeIP, AmeriFlux, Fluxnet-Canada, LBA, Asiaflux, Chinaflux, USCCC, Ozflux, Carboafrica, Koflux, NECC, TCOS-Siberia

and Afriflux

Network	Reference / Remark
FLUXNET	http://fluxnet.ornl.gov/
BSRN	http://www.bsrn.awi.de/
NEON	http://www.neonscience.org/
GC-Net	http://cires1.colorado.edu/steffen/gcnet/

MODIS/VIIRS derived blue-sky albedo against *in situ* blue-sky albedo measurements

The RMSE of the 1km VIIRS and MODIS albedos as compared to the *in situ* measurement at 9 tower sites in 2015.

	snow-free			
	num.obs	RMSE	Bias	
VIIRS	1734	0.0195	-0.0034	
MODIS	2049	0.0195	-0.0038	
	snow			
	num.obs	RMSE	Bias	
VIIRS	17	0.0488	-0.0156	
MODIS	Lរ៉ីថੇ, et.	al%, 27 617	-0.0121	

MODIS/VIIRS Albedo at Fort Peck SURFRAD tower site 2013-2015

Sentinel-2A MSI albedo at Table Mountain SURFRAD site

Snow-free subset of Sentinel-2A MSI albedo: 2016-08-25

105.25°W

105.203°W

Snow-covered subset of Sentinel-2A MSI albedo: 2016-02-07

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 0.1

105.203°W

Landsat/Sentinel Albedo Validation

Three spatially representative sites, Snow Included, July 2015 – July 2016

Multi AngLe Imaging Bidirectional Reflectance Distribution Function sUAS (MALIBU)

Summary:

Joint NASA GSFC 618/619 effort to develop multi-angular reference datasets for the assessment of BOA reflectance-based products (e.g., BRDF, albedo, NBAR, VI, PRI, LAI/FPAR, snow cover, and phenology metrics).

MALIBU Deployment

Benefits:

A cost effective (\$300 × Flight Hour), exempted (FAA-S.333 & TCAN) platform, that follows CEOS-WGCV good practice protocols.

MALIBU's 'abilitys' (Key Performance Characteristics)

Traceability

Mobility

MALIBU Payload

Multispectral 2D-array CMOS cameras

Dimensions: 87H * 131L * 78W (mm); Weight: 1.4 kg (700g / camera) Spectral coverage

Six channels: 442nm, 488nm, 531nm, 560nm, 650nm, 861nm

FWHM ~25nm

Field of View (FOV)

Frame size: 1280 * 1024 pixels FOV: 58.5°(per camera)

Pixel pitch

4.8 micron

GSD

Un-aggregated: 6-20 cm Signal to Noise: > 300 Radiometric uncertainty < 5%

Tetracam's 6-channel camera with channel 1 attached to a fiber optics.

MALIBU Spectral Response Function

MALIBU Flight Plan

Assuming flying at 400 feet with 20 m/s speed 50 second / flight line (of length 1 km)

Inherent GSD

~6 cm @ near-nadir ~16 cm @ 55deg

□Total flight time ~30 min

Multi-angular observations

Dual Tetracam cameras

MALIBU Observation

Table Mountain, CO, USA

Albedo	Blue	Green	Red	Shortwave
MODIS	0.078	0.119	0.149	0.179
MALIBU	0.088	0.116	0.166	0.163
Flux tower				0.188

Yuma cropland, CO, USA

Surface Reflectance	Blue	Green	Red	NIR
Landsat8	0.077	0.111	0.131	0.282
MALIBU	0.081	0.115	0.131	0.271

NASA Black Marble Nighttime light product validation

NASA Black Marble Nighttime light product validation

• The Black Marble nighttime light product use the surface BRDF/albedo to turn off the moonlight

• MALIBU BRDF/albedo is validated using the *in-situ* tower albedo and then is used to evaluate VIIRS Black Marble products

□ Satellite albedo products validation

□ *In-situ* reference sites

□ MALIBU deployment over different land types and snow

□ Spectral albedo