Solar and Meteorological monitoring at Newcastle, Australia

New site proposal

Dr Benjamin DuckResearch Scientist

Kenrick AndersonExperimental Scientist

Dr Chris Fell Team Leader

Dr Greg WilsonGroup Leader

26th April 2016

ENERGY www.csiro.au

What is CSIRO?

• CSIRO is Australia's national scientific research organisation

5319 talented staff

\$1billion+ budget

Working with over 2800+ industry partners

55 sites across **Australia**

Top 1% of global research agencies

Each year 6 CSIRO technologies contribute \$5 billion to the economy

CSIRO business units and focus areas

Agriculture

Energy

Food and Nutrition

Health and Biosecurity

Land and Water

Manufacturing

Mineral Resources

Oceans and Atmosphere

Astronomy and **Space Science**

Australian Animal Health Laboratory

Data61

Marine National Facility

National Computing Infrastructure

National Research Collections of Australia

CSIRO business units and focus areas

Agriculture

Astronomy and Space Science

Australian Animal

Energy

Goal:

He Deliver solutions that will enhance

Australia's economic

competitiveness and regional

energy security while enabling the

transition to a lower emissions energy future.

earch f Australia

nal Facility

nputing

atory

Newcastle – National Solar Energy Centre

Advanced Solar Technologies

Concentrated Solar Thermal Central Receiver Facility

CSIRO Energy Centre

Photovoltaic Outdoor Research Facility (PVORF)

Renewable/Stored Energy **Integration Facility**

Photovoltaic Performance Laboratory (PVPL)

National Solar Energy Centre (NSEC)

PV Fab Lab Next Generation Photovoltaics

National HVAC Performance Test Facility

Our team

Benjamin Duck

Dr Benjamin Duck Research Scientist Station scientist

10 years experience in PV. 4 years experience in outdoor solar measurements. Solar Photovoltaics, Optics, Femtosecond spectroscopy

Chris Fell

Dr Chris Fell Team Leader: **Photovoltaic** Performance Laboratory

Over 20 years research experience. Solar Photovoltaics, Solar Energy, Optics, Applied Physics

Kenrick Anderson

Mr Kenrick Anderson

Experimental Scientist Station Deputy

5 years experience in outdoor solar measurements.

Greg Wilson

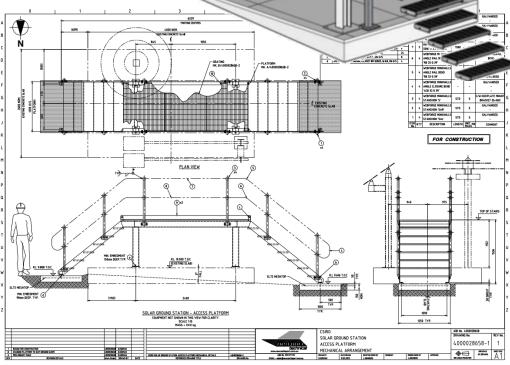
Dr Greg Wilson

Group Leader : Solar **Energy Systems Group**

16 years research experience. Solar energy, photovoltaics, energy storage, photochemistry

History of the site

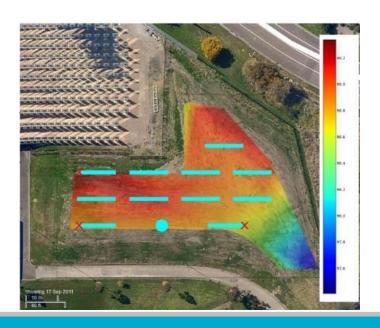
- **2005** Monitoring of solar resource
 - Primarily used in concentrating solar thermal work (CST)
 - Measurement of DNI, GHI, and DHI
- 2011 Commissioned and acquired a new monitoring station
 - Interested in photovoltaic module (PV) performance.
 - Included skycam, spectroradiometer and weather station
- 2013 Completed construction on new permanent installation.
 - Initiated program of constant data acquisition
 - Extension of spectral measurement range
- Program of steadily increasing capability.
 - Additional skycam measurement
 - Pyrgeometer measurements
 - Redundancy of existing solar measurements

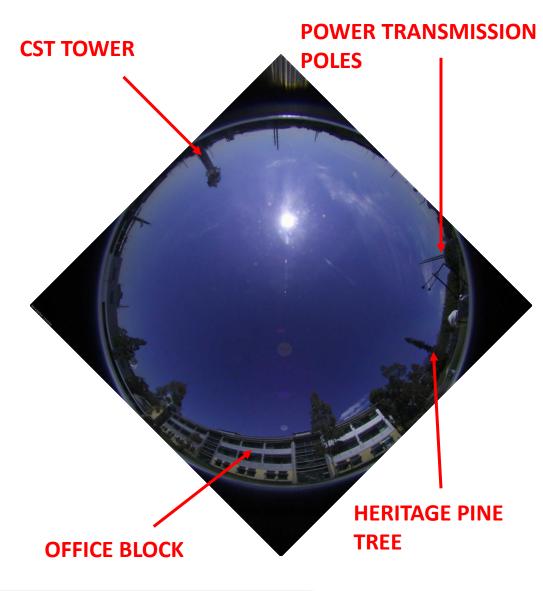


Ground station construction

 Designed an elevated platform for instrument mounting and access

 Position and heights chosen to minimise shading

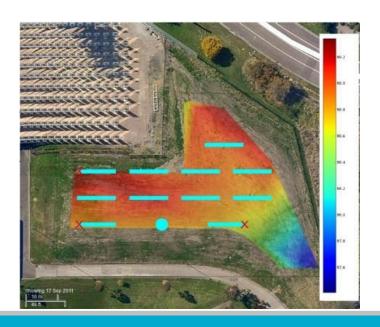

Installation details

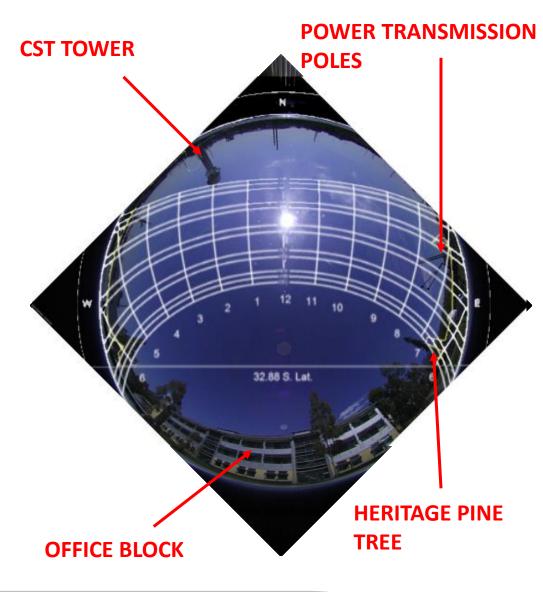

• Latitude: -32.8916

• Longitude: 151.7287

• Elevation: 16.5 m

• Instrument height: 2 m


Installation details


• Latitude: -32.8916

• Longitude: 151.7287

• Elevation: 16.5 m

• Instrument height: 2 m

Ground station views

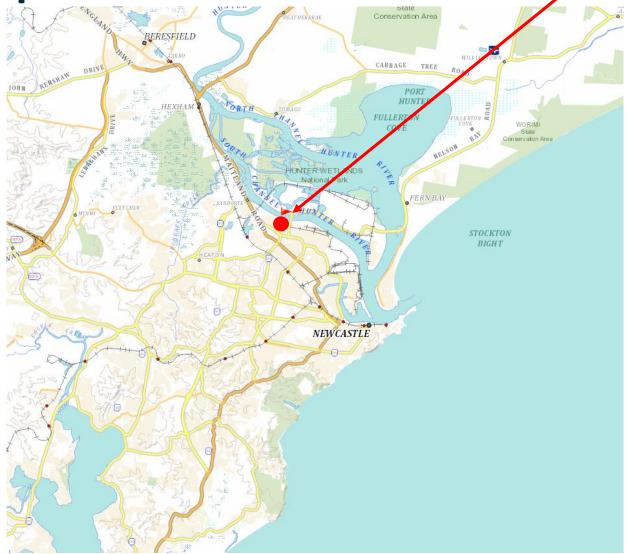
NORTH

EAST

SOUTH

WEST

Geographical details of the site I


GROUND STATION Geographical details of the site II

Geographical details of the site III

GROUND STATION

Geographical details of the site IV

- Humid, coastal climate.
- Newcastle climate is a typical coastal climate representative of the Australian Eastern Coast.
- Characterised by mean annual temperatures of 20.5 °C with the mean January temperature of 23 °C and a mean winter temperature of 11 °C. Average annual rainfall is 1103 mm

DNI measurement

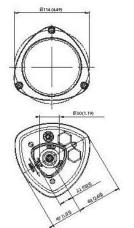
- 2 x Pyrheliometers (Kipp and Zonen CHP 1)
 - Uncertainty = ± 1.1 %
- Mounted on SOLYS 2 Suntracker equipped with tracker 'eye'
 - Accuracy
 - Passive = 0.1°
 - Active = 0.05°
- Measurement interval = 1s
 - DNI (W/m2)
 - Sensor temperature (°C)

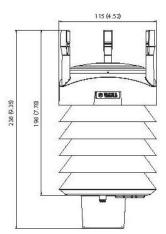
DHI and GHI measurement

- 5 x Pyranometers (Kipp and Zonen CMP 21)
 - Ventilated (3xCVF 3 , 2xCVF4)
 - Uncertainty = ± 1.4 %
- DHI measurement uses ball shading arms on SOLYS 2 Suntracker.
- Measurement interval = 1s
 - GHI & DHI (W/m2)
 - Sensor temperature (°C)
 - Ventilator Rotation Speed (rpm)

LW downwelling measurement

- 2 x Pyrgeometers (Kipp and Zonen CGR 4)
 - Ventilated CVF 4
 - Uncertainty = ± 3 %
- Measurement interval = 1s
 - LW (W/m2)
 - Sensor temperature (°C)
 - Ventilator rotation speed (rpm)

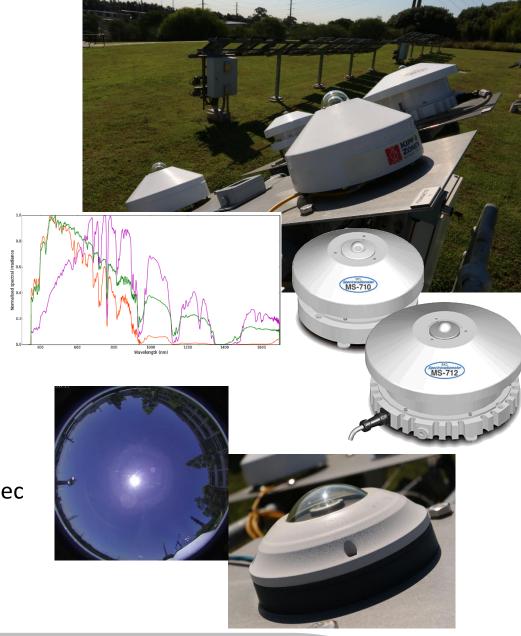



Meteorological measurements

- Vailsala WXT520
 - Mounted at height of 2m above ground
- Compliance with
 - EMC standard EN61326-1; Industrial **Environment**
 - IEC standards IEC 60945/61000-4-2 ... 61000-4-6 compliant
- Ambient temperature
- Wind speed
- Wind direction
- Relative humidity
- Barometric pressure
- Rainfall
- SDI interface

Dimensions

Dimensions in mm (inches)



Other

- GTI (30° tilt)
 - 2 x Pyranometer (Kipp and Zonen CMP 21 with CVF 3 ventilators)
- Spectrum (30° tilt)
 - EKO 710 and EKO 712 paired.
 - 350 1700 nm
 - 5 min interval (up to 30s capture time)
- Skycam
 - Vivotek FE8172V sky camera
 - 360° surround view
 - Shutter time 1/5 sec to 1/32,000 sec
 - One horizontal, one 30° tilt
- Silicon reference
 - 30° tilt

Data collection

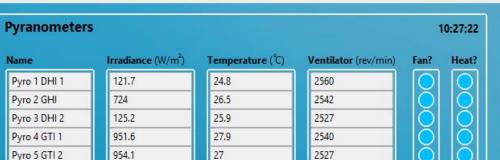
- Pyranometer, pyrheliometer and pyrgeometer thermopile signal measured using National Instruments 9214 isothermal thermocouple input module
 - Pyrgeometer error ± 3 Wm⁻²
 - Pyranometer error ± 2 Wm⁻²
 - Pyrheliometer error ± 2 Wm⁻²
- All other instrument data retrieved via serial communication protocols
- Automated data collection software continuously records to MySQL database.
- Daily data backup conducted.
- Pseudo real time data available for inspection

Pyro 6 GTI 3

PV Outdoor Research Facility

Solar Ground Station: Live Data Viewer

27


-25.8

-25.8

954.1


946.2

0

Cabinet Temperature: 24.4°C

10:25:00

2527

0

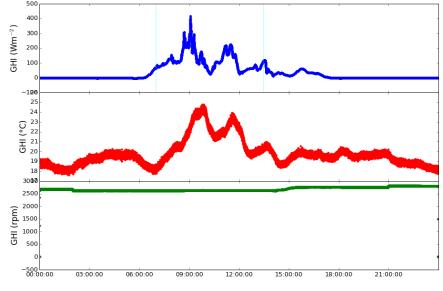
0

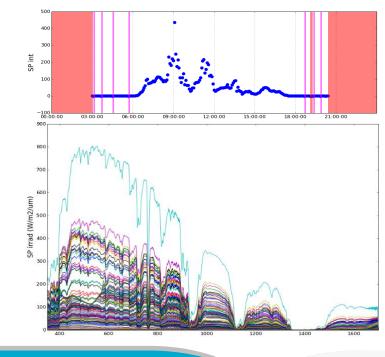
Pyranometer Trend

Pyrheliometer Trend

Temperature Trend

Wind Trend


Humidity Trend


Pressure Trend

Rainfall Trend

Data quality checking

- Basic quality checks
 - Data outside expected limits
 - Missing data points
- Known instrument issues
 - Data flagged when signature responses are observed indicating errors
- Cross comparison checks
 - Response from instruments of the same type monitored for variations
 - Transposition models used to check for consistency between instruments
 - e.g. GHI = DHI + DNI * cos(AOI)
 - Relationships between instruments of different types monitored
 - e.g. Integrated spectral irradiance < GTI

Site maintenance

- Email notifications in place for ground station warnings/error notification.
 - Event log maintained for system interruptions
- Weekday maintenance of instruments conducted.
- Instrument calibration is being pursued through BOM
 - Spare pyranometer calibrated and then used to transfer results to other instruments
- Data quality checking
 - Scripts for automated error detection
 - Filtering algorithms developed for PV work
- Backup systems
 - Daily backup of database
 - Redundant pyranometers, pyrheliometer and pyrgeometer

Summary

- Newcastle site represents Australian coastal climate
- Active research in solar energy technologies means interest in accurate monitoring is maintained
- High quality instrumentation and data acquisition
- Over two years of data currently archived
- Experienced operations team
- Maintenance systems and data quality checking routines in place
- Additional measurements made on site for enriched dataset.

Thank you

Energy

Dr Benjamin Duck Research Scientist

t +61 2 4960 6011

e benjamin.duck@csiro.au

w www.csiro.au/lorem

Energy

Kenrick Anderson Research Projects Officer

t +61 2 4960 6273

e kenrick.anderson@csiro.au

w www.csiro.au/lorem

www.csiro.au

