

मीवे NIWE

Government of India MINISTRY OF NEW AND RENEWABLE ENERGY

NATIONAL INSTITUTE OF WIND ENERGY

Karthik Ramanathan Bringing SRRA India under BSRN Net Work National Institute of Wind Energy Chennai, India

14th BSRN Science & Review Workshop Bureau of Meteorology Canberra, Australia 26-04-2016

Introduction

- Set up 4 SRRA Stations, out of 121, with additional sensors.
- Cost of setting up of each station is around \$17590 AUD(Rs.90.00 Lakhs) including civil works and installation.
- All the sensors are traceable to the World Meteorological Organization (WMO) and World Radiometric Reference (WRR) with high accuracy to ensure the good quality of recorded data.
- Solar sensors are calibrated every 2 years in our calibration laboratory

SI.	State	Stations
No.		
1	Gujarat	1
2	Haryana	1
3	Tamil Nadu	1
4	West Bengal	1
	Total	4

Details of Four Stations

- 4 Stations:
 - 4 regions (North, East, South and West) of the country.
 - 1-National Institute of Solar Energy, Gurgaon; Haryana
 - 2-Bengal Engineering & Science University, Kolkata;
 - 3-Prathyusha Institute of Technology & Management, Thiruvallur Chennai;
 - 4- Gujarat Energy Research & Management Institute, Gandhi Nagar
- Objectives:
 - Measure the solar radiation(GHI,DNI&DHI) and metrological parameters and Study effect of suspended particulate matter (aerosol), water vapor, gases in the atmosphere on scattering or absorption of solar radiation
 - Provide continuous information on radiation, metrological parameters, aerosol column, atmospheric turbidity, ozone column, water vapor in the atmosphere.

Guidelines for Site Selection

- Well exposure locations
- Free Horizon
- Strong network signal

Organization

- Academic institutions, R&D institutions etc for mutual beneficial
- Safe and Secured Places

Λ١	in	id	
A	10	IU	

- Close proximity of industrial heat source
- High tension power lines nearby

MEASUREMENT STATIONS

GPS

Temp and RH

Sensor

Data logger

Battery

Ultrasonic Wind Sensor (wind speed and wind Direction)

Rain Gauge

Radiation Sensors

Solar Tracker

Solar Panel

Advanced Measurement Station(AMS)

Gandhinagar Gujarat 72.66E 23.15N Elev-65m 07/08/11

INSTRUMENTATION

Meteorological Sensors

Ultrasonic Anemometer

Rain Gauge

Barometer

Temperature & Humidity sensor

Solar Sensors

Pyranometer-PSP (Eppley)

Solar Tracker-Geonica

Scatterometer - Envirotech USA

Direct Beam Filter Spectrometer-YES, USA

Albedometer-Hukseflux-SRA20

Silicon Pyranometer

Hukseftur Thermal Sensors CC T

Pyrgeometer-Hukseflux-IR20

Sensors installed at field Station

SI. No	Instrument	Model & Make
1	Pyranometer	PSP, Eppley/Hukseflux Make
2	Pyranometer with Shade	PSP, Eppley/Hukseflux Make
2	Pyrheliometer	PSP, Eppley/Hukseflux Make
3	Solar Tracker System	Sun Tracker, Geonica
4	Rain Gauge	52203, R.M. Young
5	Wind Speed and Direction Sensors	Ultrasonic 85000, R.M. Young
6	Temperature Sensor	Model 41382VC ,R.M. Young
7	Relative Humidity Sensor	
8	Pressure Sensor	61302 L , R.M. Young

Sensors installed at field Station

SI. No	Instrument	Model & Make
9	Data logger	3000 SeriesGeonica
10	Solar Panels	80 Watts X 2, Moserbear
11	GPS External	Garmin, USA
12	GPRS Antenna	Geonica, High Gain
13	Battery Charge Controller	PWM 20 Watts
14	External Batteries	Exide 42 AH x 2 numbers
15	6m& 1.5m Mast	Galvanized Triangular Mast
16	GPRS Connectivity	Data/Voice Card
17	Direct Beam Filter Spectrometer	Yankee, USA
18	Albedo meter & Pyrgeometer	Hukseflux, Netherland
19	Scatterometer	Envirotech Sensors, USA
20	Silicon Pyranometer	Licor, USA

Parameters Measured

Sl. No	Instrument	Parameter
1	Pyranometer	Global Radiation
2	Pyranometer with Shade	Diffuse Radiation
2	Pyrheliometer	Direct Beam Radiation
3	Solar Tracker System	Tracking the Sun movement
4	Rain Gauge	Daily Accumulated Rainfall
5	Wind Speed and Direction Sensors	Wind speed & Direction
6	Temperature Sensor	Ambient Temperature
7	Relative Humidity Sensor	Ambient Humidity
8	Pressure Sensor	Atmospheric Pressure

Continued

	Instruments	Parameter
	Direct Beam Filter	Direct spectral irradiance
	spectrometer	at narrow wavelengths
	(Sun Photometer)	
6	Albedo meter	Albedo (shortwave
		reflection)
		of the earth's surface
		(upwelling)
	Pyrgeometer	Incoming long wave
		radiation (downwelling)
	Scatterometer	Atmospheric visibility /
		extinction
	Silicon Pyranometer	Global radiation on
		horizontal & inclined plane
		with spectral response as
*		crystalline Si PV

Spectrometer Details

Wavelength(nm)	Importance
300,325	Absorption by small size aerosol
368	Weak absorption by ozone
500	Aerosol, dust particle
615,675,778,870,940	Water vapour
1020	Weak absorption by ozone and water vapour

Measurements of various parameters from AMS are useful in many ways. For example, UV radiation for solar system durability, Aerosol Optical Depth (AOD) for accurate DNI estimates and to find out the contribution of anthropogenic & natural aerosols,
 Reflectivity of the Earth surface for surface characterization,

➢Infrared Sky Radiation for estimation of thermal losses,

Atmospheric visibility for measuring the transparency of the atmosphere and for the estimation of the amount of light scattered by smoke, dust, haze, fog, rain etc

DATA COLLECTION

QUALITY ASSESSMENT

SRRA-SolMap data flow diagram

Quality Assessment

- The field solar & meteorological data collected is archived in Central Receiving Server.
- Fully automated quality control procedure is in force in the data processing & analysis.
- QC includes flagging and gap filling method using quality check algorithms directly applying on the raw data.
- For the values of Global Horizontal Irradiance (GHI), Direct Normal Irradiance (DNI) and Diffuse Horizontal Irradiance (DHI), applied quality control is based on Baseline Surface Radiation Network (BSRN) rules by the World Meteorological Organization(WMO), elaborated by the Management and Exploitation of Solar Resource Knowledge(MESOR).
- QC controlled data is available in report format as well as time series data.
 Reports are generated on daily, monthly and yearly basis besides 1 minute, 10 minute and 1 hourly time series data.

Quality Assessment

Physical plausibility tests for solar radiation values

Parameter	Min	Мах
GHI (Global Horizontal Irradiance)	$0 \frac{W}{m^2}, -4 \frac{W}{m^2}$	$DNI_0 \times 1.5(\cos\theta_z)^{1.2} + 100\frac{W}{m^2}$
DNI (Direct Normal Irradiance)	$0 \ \frac{W}{m^2}, -4 \ \frac{W}{m^2}$	DNI ₀
DHI (Diffuse Horizontal Irradiance)	$0 \frac{W}{m^2}, -4 \frac{W}{m^2}$	$DNI_0 \times 0.95(\cos\theta_z)^{1.2} + 50\frac{W}{m^2}$

Tests based on physical limits by Long & Dutton (2002), with $DNI_0 = I_0 \cdot \epsilon$ (I_0 : Solar 'Constant' (1367 W/m²), ϵ : eccentricity)

Test of coherence between measurements for solar radiation values

Parameter	Conditions	Limits		
GHI	$\theta < 75^\circ, GHI > 50 \frac{W}{T}$	> 0.92		
$DHI + DNI \cos \theta_z$	$\frac{DHI + DNI \cos \theta_z}{DHI + DNI \cos \theta_z} = \frac{\theta_z < 75}{m^2}, \text{OIII} > 50 \frac{1}{m^2}$			
$\frac{GHI}{DHI + DNI\cos\theta_z}$	$93^\circ > \theta > 75^\circ, GHI > 50 \frac{W}{T}$	> 0.85		
	m^2	< 1.15		
DHI GHI	$\theta_z < 75^\circ, GHI > 50 \frac{W}{m^2}$	< 1.05		
DHI GHI	$93^\circ > \theta_z > 75^\circ, GHI > 50 \frac{W}{m^2}$	< 1.10		

Test against limits of a clean and dry clear sky condition for solar radiation values

Parameter	Limit							
GHI	< GHI _{Clear} ,	$GHI_{Clear}(\theta_z > 85^{\circ}) = GHI_{Clear}(\theta_z = 85^{\circ}), GHI > 5\frac{W}{m^2}$						
DNI	< DNI _{Clear} ,	$DNI_{Clear}(\theta_z > 85^\circ) = DNI_{Clear}(\theta_z = 85^\circ), DNI > 5\frac{W}{m^2}$						
DHI	<ghi<sub>Clear,</ghi<sub>	$GHI_{Clear}(\theta_z > 85^\circ) = GHI_{Clear}(\theta_z = 85^\circ), DHI > 5\frac{W}{m^2}$						
DΠΙ	$>(R_L - 1.0),$	$DHI/GHI < 0.8$, $DHI > 5\frac{W}{m^2}$						

Quality Check Procedure

Usually daily QC processing of the newest data from L1 to L2

- \rightarrow flagged L2 data
- \rightarrow quality assessment summary sheets
- \rightarrow automatic error alert emails to operators

Government of India Ministry of New and Renewable Energy

Solar Radiation Resource Assessment (SRRA)

Data Analysis jointly implemented under Indo-German Energy Program by MNRE, C-WET & GIZ

Summary of Monthly Values of Solar Radiation and Meteorological Parameters

Month: August-2012

Station	Name	Station	ID St	ate	District	Date of missio	Com- oning	Latitude	[°N] Longitude[°E] Eleva		ition[m]	
Cw	Cwet 1791 Tamil Nadu		Nadu	Chennal	2011-05-28 12.96			80.22		1		
Prenarad		repared	bv	Reviewed by		Approved by						
	Name		D	evanathar	1.B	Pras	un Kum	ar Das		Dr.G.G	iridhar	
	Date		1	2012-12-2	0							
2012-08	GHI.	GHI	DNI*	DNI	DHI.	DHI	Air Temp	RH	AtmPr	Rain Acc.*	Wind speed	Wind dir.
	[kWh/m^2/d]	[W/m*2]	[kWh/m^2/d]	[W/m^2]	[kWh/m^2/d]	[W/m^2]	['C]	[26]	[hPa]	[mm]	[m/s]	[1]
average	4.78	185	2.65	79	2.80	129	28.8	77	1002	4.3	2.5	219
min	1.86	0	0.02	0	0.48	0	23.7	34	997	0.0	0.0	28
max	6.53	1047	6.06	851	3.75	689	36.6	100	1006	69.8	74.9	351
sum [kW- h/m*2].[mm]	148.32	138	82.07	59	86.83	96	- 1	-	•	133.4	1	-
GHI Global Horizontal Irradiance			AirTemp	Air Tem;	perature	•	Wind dir.	Wind dir	ection			

DNI Direct Normal Irradiance

DHI Diffuse Horizontal Irradiance

Values of all parameters mentioned above are averages/sums/iminimums/maximums related to 1 minute values over the entire month including right hours. For wind: maximum wind speed refers to 1 or 10 sec values and average wind direction refers to predominant wind direction "Average, Minimum, Maximum and Sum of the daily sums observed in this month.

2: Daily average values of ambient temperature and relati stra qc v1.1.2

QC summary sheet: Solar parameters

Cwet(1791) - QC Statistics - Irradiance - Period: 2013-06-01 00:01 - 2013-06-02 00:00, Time Resolution: 1 min

SRRA flagging convention

- 0 : Missing value
- : Value seems to be correct. 1____
- 2____ : Value is smaller than the minimum physical limit.
- 3____ : Value is greater than the maximum physical limit.
- 4 : Value is higher than the value for a clear sky condition, inside max physical limit
- 5 : GHI measured and GHI calculated by sum of diffuse and direct do not match, inside the clear sky and physical limits
- 6____ : DHI is greater than GHI beyond the acceptable tolerance.
- 7____ : Value is below the min limit derived from a model.
- 8 : Tracking error, DHI-Pyranometer-Shading error, all other test approved
- 9 : Shading by obstructions
- _000_ : The value doesn't exceed the limits (also for missing values).
- : The value exceeds the limit by xxx=|x_{meas}-x_{lim}| _XXX_
 - not replaced 0:
 - replaced by linear interpolation
- ____1: ____2: replaced by satellite data
 - 3: replaced manually by other values from a different source
 - 4: replaced by data from a model / night hours set to 0

GHI(kWh/m^2)

2012 2013 2014 2015

DNI(kWh/m^2)

kwh/m^2

References

- 1. Kumar A, Gomathinayagam S, Giridhar G, Mitra I, Vashistha R, Meyer R, Schwandt M, Chhatbar K, 2014. *Field experiences with the operation of solar radiation resource assessment stations in India*. Energy Procedia 49 (2014) 2351 2361, Elsevier
- 2. Marko Schwandt, Kaushal Chhatbar, Richard Meyer, Indradip Mitra, Ramadhan Vashistha, Godugunur Giridhar, S. Gomathinayagam, Ashvini Kumar: *Quality check procedures and statistics for the Indian SRRA solar radiation measurement network:* 2013 ISES Solar World Congress
- 3. Marko Schwandt, Kaushal Chhatbar, Richard Meyer, Katharina Fross, Indradip Mitra, Ramadhan Vashistha, Godugunur Giridhar, S. Gomathinayagam, Ashvini Kumar: *Development and test of gap filling procedures for solar radiation data of the Indian SRRA measurement network:* 2013 ISES Solar World Congress

Thankyou