The World Infrared Standard Group (WISG) of longwave radiometers: How can/should updated calibrations be transferred to BSRN records?

> Stephan Nyeki, Stefan Wacker*, Julian Gröbner PMOD/WRC, Davos, Switzerland

* Formerly at PMOD/WRC, now at ASIAQ, Nuuk, Greenland

World Infra-Red Standard Group (WISG)

• PMOD/WRC pyrgeo calibrations based on WISG

Eppley PIRK&Z CG431463 (>2001), 31464 (>09.2003)FT004(>09.2003), 010535 (>09.2003)

• WISG calibration based on ...

PIR 31463, CG4 FT004 calibs based on IPASRC-I, -II (1999, 2001) Agreement of pyrgeos, ASR, AERI, RTMs was ±2 W.m⁻².

• WISG

Internal stability±1 W.m⁻² since Jan. 2004Uncertainty±2.5 W.m⁻²

World Infra-Red Standard Group (WISG)

Night average differences of DLR between the WISG pyrgeometers relative to their average. The thick lines represent a monthly running average.

World Infra-Red Standard Group (WISG)

- WISG is complemented by 2 pyrgeos without IWV dependence:
 - Since Feb. 2008, CG4 030669 (FT006 body, 030669 dome), unofficial "WISG₅".
 - Since Nov. 2011, CGR4 110390 (no solar-blind filter), unofficial "WISG₆".
- Observations in *Gröbner et al.* (JGR, 2015), suggest that the WISG may eventually need to be re-calibrated against other transfer standards (IRIS/ACP/others ...) due to:
 - IWV dependence of Eppley PIR and pre-2003 K&Z CG4 when IWV<~10 mm.
 - A scale offset (up to -5 W.m⁻²) of the WISG due to its calibration dating back to IPASRC-I and II.

How will these aspects potentially affect BSRN long-wave irradiance time-series?

BSRN PYRGEOMETER INSTRUMENT TYPES

	Eppley PIR	K&Z CG4	K&Z CGR4	Total		
N	188	15	20	223		
% (of total)	84.3	6.7	9.0	100		

BSRN PYRGEOS WITH DIRECT TRACEABILITY TO WISG (ie CALIBRATED AT PMOD/WRC)						
	Eppley PIR	K&Z CG(R)4	Total			
N N (dir. tracaabla)	188	35	223			
%	47 25	31	26			

Note: Data from PMOD Archive

Note: Percentages are definite and not upper or lower limits

BSRN PYRGEOS WITH IWV DEPENDENCY

	Eppley PIR	K&Z CG(R)4	Total
N	188	35	223
N (IWV depend)*	188	10	198
%	100	29	89

* Assuming all PIR and pre-2003 CG4(<SN 030646) are affected.

"Supported" by numerous 1-season calibs wrt WISG.

BSRN PYRGEOS WITH INDIRECT TRACEABILITY TO WISG (ie CALIBRATED VIA A REF. PYRGEO)

	Eppley PIR	K&Z CG(R)4	Total		
	Confirmed	Confirmed	Confirmed		
	so far	so far	so far		
	_	_			
N	188	35	223		
N (indir. traceable)	40	24	64		
%	21	69	29		

pinou WIC

Note: Percentages are lower limits

Summary

- At least 55% BSRN pyrgeos currently have calib directly/indirectly traceable to WISG.
- Hence, max of 45% BSRN pyrgeos have calibrations traceable to BBs and other institutes.
- Users (those asked so far) have confirmed that WISG calibrations were implemented asap.
- Portions of BSRN time-series may still be based on BB calibrations.
- Note: Statistics refer to *N* of pyrgeos and not data-months in BSRN archive.

The "Big" Picture

The number of pyrgeos (used for atmos meas) outside BSRN is potentially large:

- Currently 223 pyrgeos in BSRN archive since inauguration in 1992.
- PMOD/WRC has calibration records of ~220 pyrgeos (122 PIR, 98 K&Z) since 1993. Only 58 from BSRN.
- Worldwide number of Eppleys and K&Z currently in use for atmos meas?

Station		preBSRN	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
																				WIS	G					
Alert	ALE														5	12	12	12	12	12	12	12	3			
Alice Springs	ASP					12	12	12	12	12	12	11	12	12	12	12	12	12	12	12	12	12	12	11	9	
Barrow	BAR		12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	2					
Bermuda	BER		12	12	12	12	12	12	12	12	12	12	12	10	12	12	12	12	12	12	12	12	12			
Billings	BIL			4	12	12	12	12	12	12	12	11	12	12	12	12	12	12	12	12	12	12	4			
Bondville	BON					12	12	12	12	12	12	12	12	12	12	12	12	12	12	6						
Boulder, SURFRAD	BOS					5	12	12	12	12	12	12	12	12	12	12	12	12	12	6			_			
Boulder	BOU		12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	7		~	
Brasilia	BRB															11	12	10	4	12	12	12	12	12	12	
Camborno	CAM											12	12	12	12	12	12	12	2	12	12	12	12	12	12	
Carpentras	CAR						4	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	
Chesapeake Light	CLH										8	12	11	12	12	12	12	12	12	12	12	12	12	12	12	1
Cener	CNR														_					6	12	12	12	2		
Cocos Island	COC														3	10	8	12	12	12	12	12	9	4	9	
De Aar	DAA										7	6	12	11	12	1										
Darwin	DAR												10	12	12	12	12	12	12	12	12	12	3			
Desert Rock	DRA								10	12	12	12	12	12	12	12	12	12	12	6						
Concordia Station	DOM																12	12	12	12	2					
Darwin Met Office	DWN																		12	12	12	12	12	9	9	
Eureka	EUR																	4	12	12	12	12				
Southern Great Plains	E13				12	7	12	12	12	12	12	12	12	12	12	12	12	12	12	11	12	12	4			
Florianopolis	FLO				6	12	12	10	12	12	9	12	12	12	12	12								4	12	1
Fort Peck	FPE					12	12	12	12	12	12	12	12	12	12	12	12	12	12	6						
Fukuoka	FUA							42			42	42		42		42		42	42	~	9	12	12	12	11	
Goodwin Creek	GCK					12	12	12	12	12	12	12	12	12	12	12	12	12	12	6			~		42	
Gobabeb	GUB	121	0	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	
llorin		121	9	12	8	7	12	12	6	12	12	12	7	12	12	7	12	12	12	12	12	12	12	12	1	
Ishigakijima	ISH		-	12	0	'	12	12	0	12	12	12	'	12	12						٥	12	12	12	11	
Izana	174																			10	12	12	12	12	12	1
Kwajalejn	KWA		9	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12					-
Lauder	LAU									5	12	12	12	12	12	12	12	12	12	11	12	12	12	12	9	
Lerwick	LER											12	12	12	12	11	11	12	4						12	
Lindenberg	LIN				3	12	12	12	12	12	12	12	12	12	12	12	12	4								
Langley Research Center	LRC																									
Momote	MAN						3	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	10		
Minamitorishima	MNM																				9	12	12	12	11	
Nauru Island	NAU								2	12	12	12	12	12	12	12	12	12	12	12	12	12	12	9		
Ny-Ålesund	NYA		5	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12		
Palaiseau	PAL			_										7	12	12	12	12	12	12	12	12	12	12		
Payerne	PAY		3	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	5				
Rock Springs	PSU								7	12	12	12	12	12	12	12	12	12	12	6						
Petrolina	PIR							42			42	42		42			1	/	4	12	12	12	12	12	9	
Regina Balia da Maria	REG					12	12	12	12	11	12	12	12	12	12	12	12	12	12	12	12	12				
Kolim de Moura	KLIVI SAD																	2			0	12	12	12	11	
Sada Bogar	SRO													12	12	12	17	12	12	12	12	12	12	12	11	
São Martinho da Serra	SMS													12	12	12	0	12	7	12	12	12	12	17	٥	
Sonnblick	SON																9	12	'	12	12	12	12	12	12	
Solar Village	SOV								3	12	12	12	12													
South Pole	SPO		12	12	10	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	
Sioux Falls	SXF													7	12	12	12	12	12	6						
Svowa	SYO				12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	8		
Tamanrasset	TAM										10	12	12	12	12	12	12	12	12	12	12	12	12	12	12	
Tateno	TAT						11	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	11	
Tiksi	TIK																				7	12	12	8		
Toravere	TOR									12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	
Xianghe	XIA															12	12	12	12	12	12					
Historical station	Fismitte	1																								

- Pyrgeometer calibration history of several stations analysed so far.
- Yellow = BB calibs traceable to manuf/inst
- Light orange = BB calibs directly/indirectly traceable to PMOD/WRC BB.
- Dark orange = BB/outdoor calibs directly/indirectly traceable to PMOD/WRC WISG.

Closer Look at IWV Dependence and Scale Offset of Reference and BSRN Pyrgeos

Too few measurements for IWV>10 mm

PMOD/WRC PIR 29434

Too few measurements for IWV>10 mm

NREL PIR 31197

Too few measurements for IWV>10 mm

DWD CGR4 060028

Too few measurements for IWV > 5 mm

NREL CG4 060881

Too few measurements for IWV>10 mm

BOM CG4 060921

Too few measurements for IWV>10 mm

WISG Calib

15

Atmospheric IWV [mm]

All data

20

Al data

X

All date

Valid data Valid data (NVV>10 mm

Valid data \times^6 fit

Atmospheric IVV [mm]

Atmospheric IWV [mm]

Valid data

Valid data

0.2211 -1.9603

0.0105 -0.1617

0.1426 -1.8173

Linear fit:

Linear fit:

Linear fit:

2 ≥

≥

WISG₅ Calib

IRIS Calib

WISG₅ meas. only available after Feb. 2008

IRIS outdoor meas. only available after June 2008

K&Z Ref CG4 010536

- 2011 and 2015 periods combined
- New dome since 2005

K&Z Ref CGR4 100280

pmod wrc

JMA CGR4 070037

JMA CGR4 070038

JMA CGR4 070039

Too few measurements for the whole IWV range

pmod wrc

SMHI CGR4 110349

SMHI CGR4 110350

MCH CGR4 110355

BSRN pyrgeo at PAY

Measurements are ongoing at PMOD to obtain data for a full 3-season calibration. Graphs show status up to Feb. 2016.

WISG Calib

Linear fit:

Linear fit:

Atmospheric IVV [mm]

WISG₅ Calib

IRIS Calib

WrC

Atmospheric IV/V [mm]

IWV Dependence of Pyrgeos: Summary of 3-Season Meas at PMOD/WRC

	Meas >90 days	Meas >90 days AND Meas over IWV = 2 – 25 mm range
PIR	7	4 ^a
CG(R)4	21	14 ^b

^a (1 Customer, 2 WISG, 1 PMOD/WRC), ^b (10 Customer, 2 WISG, "WISG5" and "WISG6")

- Autumn-Winter-Spring period long enough but very often too few valid data points to fully characterise IWV dependence of pyrgeos.
- Characteristics of IWV dependence:
 - Range^c of IWV dependence:
 - Slope of IWV dependence (IWV < 10 mm):

IWV < ~10 mm -0.5 W.m⁻².mm⁻¹ (IWV)

• IWV dependence related to pyrgeo dome, but comprehensive explanation still missing. Spectral dome transmission? Dome coating?

^c The range IWV < 2 mm not observed at PMOD/WRC. Is linear or exponential behavior expected? No BSRN station with simultaneous PIR/pre-2003 CG4 and CG4(R)4 and with low potential IWV found so far.

IWV Dependence of Pyrgeos: Conclusions

- More pyrgeos, especially PIR, should have longer meas (preferably >2 years) to better characterise/confirm IWV dependence.
 Other stations* may have simultaneous PIR/pre-2003 CG4 and post-2004 CG(R)4 meas?
- Is a "general" correction for IWV dependence possible?

We believe so, despite some variability.

- Unlikely that BSRN pyrgeos will be sent to PMOD/WRC for a 3season calib → general IWV correction is only realistic option.
- All 188 PIR and 10 CG4 BSRN pyrgeos are most prob. affected.

* Following have submitted PIR and CG4 to BSRN but presently unknowm whether meas were simultaneous (CAR, LAU, LER, PAY, SYO, TAT).

Scale Offset of Pyrgeos: WISG and IRIS Long-Term Measurements

Table 2. Summary of the Dependence of the WISG Pyrgeometers With Respect to IRIS#4 Obtained From Measurements Spanning the Period August 2011 to December 2013^a

Instrument	$\begin{array}{l} \text{Offset (IWV > 10 mm)} \\ (\text{W } \text{m}^{-2}) \end{array}$	
WISG 1	-6.1	-0.52
WISG 2	-4.7	-0.21
WISG 3	-5.5	-0.45
WISG 4	-4.5	-0.55
WISG	-5.1	-0.42

 $\label{eq:stable} \begin{array}{l} \textbf{Table 3. } Operational and Suggested Sensitivities of the WISG Pyrgeometers as Retrieved for the Period August 2011 to December 2013 With Respect to IRIS#4^a \\ \end{array}$

		Sensitivity (µV)	V ^{−1} m ²)	
		Offset	Slope/1 cm IWV	Maximal Relative
Instrument	Operational	IWV > 10 mm	IWV < 10 mm	Change in %
WISG 1	3.53	3.80	-0.25	-5.3
WISG 2	3.58	3.79	-0.14	-3.0
WISG 3	12.3	13.2	-1.0	-6.1
WISG 4	9.59	10.1	-0.75	-5.9

^aThe slope of the new sensitivities are given per 10 mm IWV, while the relative changes are calculated for the lowest observed IWV at Davos of 2 mm.

Gröbner et al. (JGR, 2015)

• PIR and pre-2003 CG4

Up to +4 W.m⁻² too high when IWV >10 mm (latest 2011-2015 data)

• IRIS and post-2003 CG4

Results to within ±1 W.m⁻²

• Necessary to keep WISG as a transfer standard as:

IRIS/ACP/... are not "allweather" radiometers.

Scale Offset of Pyrgeos: Conclusions wrt BSRN

- Only WISG₁₋₄ and WISG₅₋₆ have long-term measurements wrt IRIS.
- A scale correction can be applied by using the WISG as a re-calibrated transfer standard wrt IRIS/ACP/XYZ (WISG_{IRIS}).
- Calculate new sensitivity C using raw data from previous PMOD/WRC calibrations.
- All 188 BSRN PIR pyrgeos are assumed to be affected.
- All 35 BSRN CG(R)4 pyrgeos are assumed to be affected.

Pyrgeo Stability and Traceability

Pyrgeo Calib Stability from PMOD/WRC Archives: Sensitivity C Calculated with Albrecht Eq

Kipp & Zonen CG(R)4

Eppley PIR

Albrecht eq (k1=0, k2=1, k3=constant for PIR). Vertical bars = uncert. (3.5%).

• Ref pyrgeos or those with a long calibration history are shown. Others include:

AWI Potsdam	PIR 28858, 28859, 28895, 28897
SURFRAD	PIR 29255, 29257, 29258
WISG	PIR 31463, 31464
	CG4 FT004, CG4 010535
K&Z	CG4 010536

• Ref pyrgeos from large institutes calib at PMOD/WRC on a regular basis ie 1 – 3 yrs.

• However, most pyrgeos calibrated every 2 – 5 yrs or on sporadic basis.

How Good has Transfer of WISG Calibration been to Commercial Pyrgeometers?

An estimate for CG(R)4 by comparing original K&Z with first WISG calibration.

- Calib procedures? ... Not really.
 - PMOD/WRC: clear sky/partially cloudy night-time.
 - K&Z: night-time, clear (net LR > -40 W.m⁻²).
- Sensor degredation? Not really.
 - WISG CG4s illustrate drift «1%/year
- Scale changes before WISG established?
- IWV issues during any part of the "traceability chain".
- Recent improvements (now +/- 1.5%) due to:
 - Intro of IWV criterion at PMOD/WRC since Apr. 2012.
 - K&Z intro of stricter QC procedures has helped reduce the standard deviation.

* Eppley ref and WISG comparison conducted during IPCs but lack of new Eppley PIR calibrated at PMOD/WRC prevents a more comprehensive overview. NOTE: Only WISG calibs CG4 and CGR4s (N=17, 42; no multiple entries) within 3 years of orig. K&Z calib incl. using Albrecht eq (ie k₁=0, k₂=1). Only 4 pyrgeos are in BSRN. NOTE: 3-season = calibration period during autumn-winter-spring

Updating BSRN Long-Wave Time-Series

BSRN Long-Wave Radiation Archives: Possible Procedure to Update Time-Series

• If BSRN pyrgeos not traceable to WISG then correction not possible.

- If BSRN pyrgeos are traceable:
 - PMOD/WRC re-determines pyrgeometer sensitivity C wrt WISG_{IRIS}, using previous calibration data.
 - BSRN Users re-calculate long-wave time-series using new sensitivity C based on WISG_{IRIS}.
 - If pyrgeos have an IWV dependence, then apply correction to longwave time-series based on IWV time-series.
- Submit corrected time-series to BSRN, and adhere to the BSRN archiving guidelines ... Easy/difficult ... probably controversial ???
- However, at this early stage, emphasis on procedures rather than application of corrections.

Outlook for Current Project (Finish Dec. 2016)

• Publish findings and present report to CIMO Task Group.

• Feedback from the BSRN community is very welcome !!!

Thanks for your attention

Extra Slides

What are the Consequences of Adopting the IRIS/ACP/XYZ as new Transfer Standards? Global Radiation Budget

- DLR would potentially increase by +4.0 W.m⁻² (clear-sky, IWV>10 mm) but cloudiness occurs at almost all stations except perhaps at eg Alice Springs(!)
- Next Task: Obtain raw data and IWV climatology for several representative stations, and re-calculate DLR time-series.
- Final Task: Possibly see if Martin Wild could run a preliminary Surface Budget experiment to see the effect (if any).

What are the Consequences of Adopting the IRIS/ACP/XYZ as new Transfer Standards? Global Radiation Budget

[Figure from IPCC 2013].

omod wrc