Updated Estimates of California's Urban and Rural Methane Emissions

M.L. Fischer¹, S. Jeong¹, E. Novakovskaia², A.E. Andrews³, L. Bianco³, H. Graven⁴, Y. Hsu⁵, S. Newman⁶, P. Vaca⁵, A.V. Pelt⁷, R. Weiss⁴ and R. Keeling⁴

¹Lawrence Berkeley National Laboratory, Berkeley, CA 94720; 510-486-5539, E-mail: mlfischer@lbl.gov
²Earth Networks, Inc., Germantown, MD 20876
³NOAA Earth System Research Laboratory, Boulder, CO 80305
⁴University of California at San Diego, Scripps Institution of Oceanography, La Jolla, CA 92093
⁵California Air Resources Board, Sacramento, CA 95812
⁶California Institute of Technology, Pasadena, CA 91125
⁷Picarro Inc, Santa Clara, CA 94054

We present updated atmospheric inversion estimates of California's total CH_4 emissions for 3 months (June-August) in summer 2012. Measurements include data from 9 sites covering urban and rural areas of California's South Coast Air Basin, Central Valley, San Francisco Bay Area, and North Coast. We use Bayesian inversions to estimate the CH_4 emissions from discrete regions of California by combining the local CH_4 measurements, background CH_4 , 0.1 degree prior model emission maps (one specific to California and one global), and predicted CH_4 signals from the Weather Research and Forecasting/Stochastic Time-Inverted Langrangian Transport atmospheric transport model. We quantify site-specific model-measurement uncertainties due to: 1) transport using meteorological data from a network of atmospheric profilers and *in situ* sensors, 2) background using oceanic and aircraft observations, and 3) prior emissions using the spread results obtained with the two different maps. Bayesian inverse modeling using the network of measurements constrains a majority (>90%) of California's emissions. Here, we update the emission estimates and uncertainties and compare our results with previous studies covering smaller areas and time periods.

Figure 1. CH₄ emissions by region for California showing prior (annual average), and posterior estimates (June, July, August) from the inversion of network data.