Recommendations for Interpretation of "Black Carbon" Measurements

John A. Ogren

Chairman, WMO/GAW Scientific Advisory Group for Aerosols
National Oceanic and Atmospheric Administration
Earth System Research Laboratory
Global Monitoring Division
Boulder, Colorado, USA

GAW SAG-Aerosol Members

- John Ogren (Chairman), Urs Baltensperger, Angela Benedetti, Markus Fiebig, Thomas Holzer-Popp, Stefan Kinne, Paolo Laj, Shao-Meng Li, Gelsomina Pappalardo, Andreas Petzold, Nobuo Sugimoto, Christoph Wehrli, Alfred Wiedensohler, Xiao-Ye Zhang
- Manuscript under discussion at http://www.atmos-chem-physdiscuss.net/13/9485/2013/acpd-13-9485-2013.html

What are the Issues?

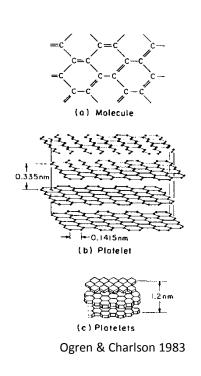
Black carbon (BC) has important effects on climate and health

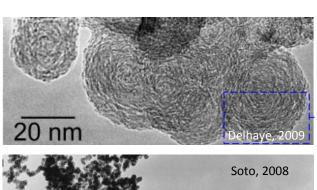
- Recently identified as #2 most important climate forcing agent (+1.1 W m⁻², 90% bounds +0.17 to +2.1 W m⁻², Bond et al., 2013).
- Associated with asthma and other respiratory problems, heart attacks and lung cancer.

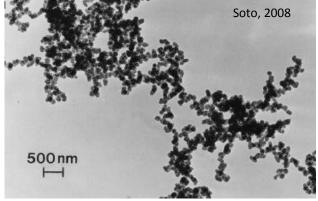
BC is poorly defined in the scientific literature

- Carbonaceous matter does not appear in atmospheric aerosols as a pure substance.
- Measurements may refer to the same quantity with different names, or to different quantities with the same name.

BC measurements depend on the method used


- Current methods respond to different properties of BC.
- Correlations between methods are frequently high, but relationships vary among sites, seasons and aerosol types.




What is Black Carbon?

Nanometer scale

→ Meter scale

What is Black Carbon?

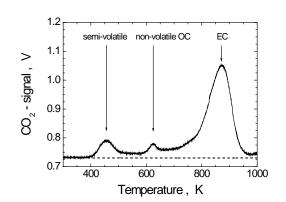
- Defined by five essential characteristics
 - Composition
 - Morphology
 - Volatility
 - Solubility
 - Light absorption

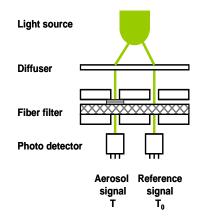
Property	Characteristics	Consequences
Composition	graphitic-like structure	low chemical reactivity in the
	containing a high fraction of	atmosphere; slow removal by
	sp ² -bonded carbon atoms	chemical processes; strong
		optical absorption
Morphology	aggregates consisting of small	high specific surface area;
	carbon spherules, each typically	high capacity for sorption of
	10-50 nm diameter	other species
Volatility	refractory material with a	high stability in the atmo-
	volatilization temperature near	sphere; longer atmospheric
	4000K; gasification is possible	residence time
	only by oxidation at T > 340°C	

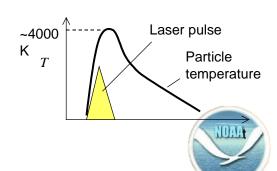
Property	Characteristics	Consequences
Solubility	insoluble in water, in organic	Slow removal by clouds and
	solvents including methanol and	precipitation, unless coated
	acetone, and in the other	with water-soluble
	components of the atmospheric	compounds; longer
	aerosol	atmospheric residence time
Light absorption	uniformly absorbing in the	Reduction of the albedo of
	spectral range of visible light;	clouds, snow, and ice;
	characterized by a significant,	atmospheric heating; surface
	non-zero and wavelength-	cooling – all of which lead to
	independent imaginary part	effects on solar radiation and
	of the refractive index over	climate
	VIS and NIR spectral regions	

"BC" Measurement Methods

Evolved Carbon


- CO₂ evolved from thermal or thermooptical methods: IMPROVE / EUSAAR
- BC properties: composition, volatility


Light Absorption

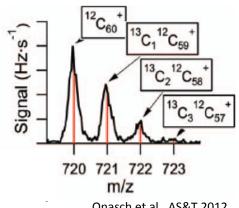

- Filter-based: Aethalometer, PSAP, MAAP, COSMOS
- In situ: photo-acoustic, ext. minus scat.
- BC properties: light absorption

Laser Incandescence

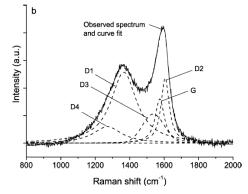
- Laser heating of particles, e.g., SP2, LII
- BC Properties: volatility, composition

"BC" Measurement Methods

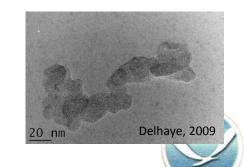
Aerosol Mass Spectrometry


- Vaporization and detection of carbon ion clusters in mass spectra: ATOFMS, SP-AMS
- BC properties: composition

Raman Spectrometry


- Detection of graphite-like ordered and disordered carbon
- BC properties: composition

Electron microscopy


- Detection of particle microstructure and morphology, e.g. TEM
- BC properties: morphology

Onasch et al., AS&T 2012

Ivleva et al., AS&T 2007

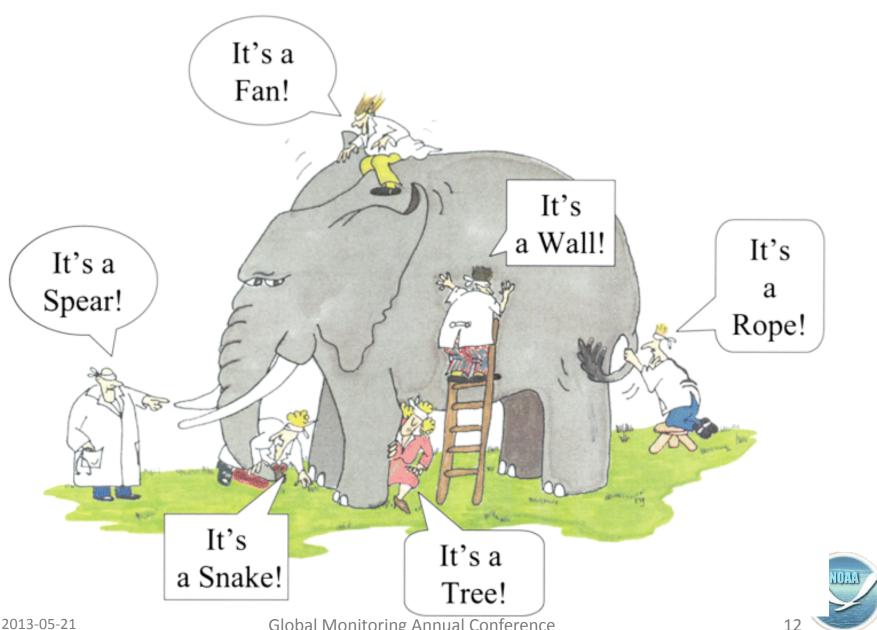
Recommended Terminology

- No current method combines all five essential characteristics of BC
- Consequently, no current method can justifiably claim to provide a quantitative measurement of BC
- Recommendations
 - Use "BC" as a qualitative term referring to any of the quantitative methods
 - Use terms associated with the measurement methods when reporting quantitative results

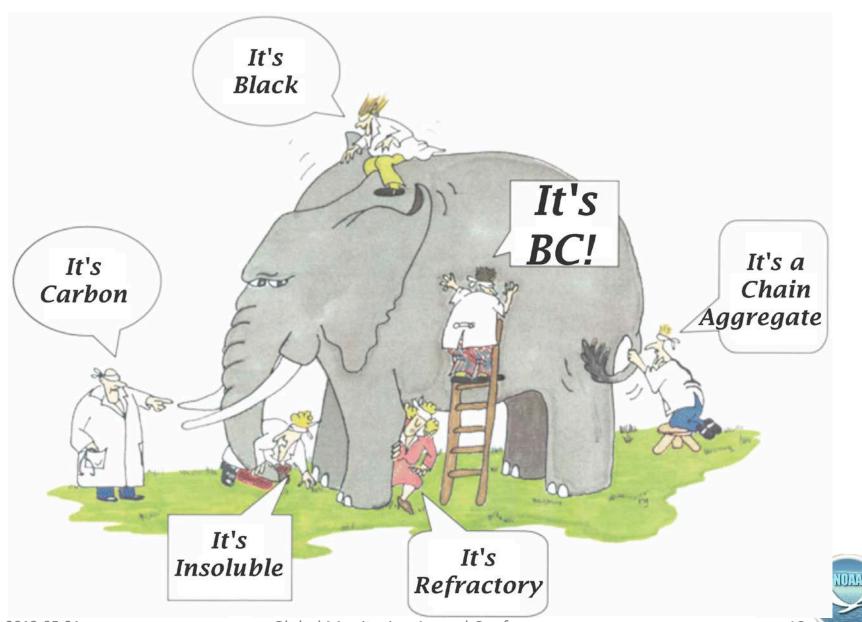
Recommended Terminology

Equivalent black carbon (EBC)

- Data derived from optical absorption methods.
- Report the optical measurements primarily as light absorption coefficient, and secondarily as EBC, along with the mass absorption efficiency used to convert absorption to EBC.


Refractory black carbon (rBC)

Data derived from incandescence methods.


Elemental carbon (EC)

 Data derived from methods that are specific to the carbon content of carbonaceous matter (evolved carbon, aerosol mass spectrometry, Raman spectroscopy).

Blind Men and the Elephant

Interpreting "BC" Measurements

