SHADOZ (Southern Hemisphere Additional Ozonesondes): Recent Accomplishments & Upcoming Activities

Anne Thompson, PI – amt16@psu.edu

GMAC, 22 May 13

With: J C Witte (SSAI at NASA/GSFC), S K Miller (PSU), S J Oltmans (CU/CIRES, NOAA/GMD), B J Johnson (NOAA/GMD)

Road Map

- What, Where, When, Who is SHADOZ?
- Accomplishments
 - Satellites supported for validation: Aura, GOME-2, NPP-Suomi, etc
 - Superior tropical O₃ climatologies with seasonality, QBO/ENSO other oscillations identified
 - Trends studies enabled by 15-yr record at some locations
- Current Activities related to WMO/SI2N Assessments
 - Technical issues, eg sensing solution strength, instrument manufacturer, affect O₃ measurement [*Smit et al.* 2007, *Thompson et al.*, 2007; 2012] in SHADOZ, other global sonde stations
 - SHADOZ re-processing with WMO/O3S-DQA protocol focus on recently characterized issues in O₃ measurement [*Deshler et al.,* 2012]
 - New issue emerges: radiosonde pressure errors affect O₃ reading

Why-What-Where-When-How SHADOZ? (Southern Hemisphere Additional Ozonesondes)

Strategic Design Addresses Questions – 1998->

- **1>** Satellite/model validation & optimization
- **Req'ts:** operational, addl supplies <-> data archive 2>
- **3>** Ozone variability on multiple time, space scales
 - Full zonal coverage 9 sites in 1998, now 13; 2-4 soundings/month
 - 2013 > 6000 profiles at <u>http://croc.gsfc.nasa.gov/shadoz</u>

4> Keys to success: Leveraged resources. Open access. Distribute via WOUDC (woudc.org); NDACC.

SHADOZ Sites

Red Stations operated or supported by NOAA/GMD

Thompson et al. J Geophys. Res. 2012

Accomplishments (1): Satellites Supported. Add TEMPO (new NASA EVi)

Missions	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17
EP-TOMS ('96–'05) SAGE III Meteor-3M ('01-'05)	_			→												
ENVISAT [MIPAS, SCIA] ('02-'12)	-															
NOAA -16, 17, 18 19 [SBUV/2]	-										→				->	
Aqua [AIRS] ('02-	-										->					>
Aura [TES, OMI, MLS]			+								->		>		/letOp	c
MetOps-A,B,C [IASI, GOME-2]					~	M	etOp-A	<i>۱</i>			+	MetOp	-B			> ,
SCISAT [ACE-FTS, MAESTRO] ('03-		*														>
Odin [OSIRIS] ('01-											→				>	
Suomi NPP [CrIS, OMPS]										*				-,		>
JPSS-1 [CrIS, OMPS]															-	→
ISS [SMILES ('09-'10), SAGE III]								*	>				<u> </u>		,	
Sentinel-5 Pre [UVNS-Tropomi]														-		\rightarrow

Accomplishments (2): Tropical Lower Stratospheric Ozone Trend; Free Tropospheric Ozone Trend at Sub-Tropical Station

Μ

Months

S

0

Ν

D

M

А

-1.5

Right: Free tropospheric ozone increase. Most prominent in winter, Reunion & Irene (Thompson, Balashov et al, in prep, ACP)

Current Activities

- Driven by ozone-climate community requirements for more accurate profiles for trends studies throughout troposphere, TTL, stratosphere
- Mid-upper stratosphere: chemical changes (ODS decrease) & trends
- <u>TTL</u> ozone-temperature
 Interactions, dehydration, climate
 Sensitivity
- <u>Tropospheric O₃</u> pollutant,
 GHG importance Mid-strat --->

Troposphere --->

Variables Affecting Measurement. Some Affect Entire Profile, Others Affect Stratosphere, Troposphere, TTL

- Every sonde launched is a new instrument; I_{bg} and PCF measured in lab
- $P_{O3} = 4.31 \times 10^{-2} (I_{ascent} I_{background}) \times T_{pump} \times PCF (1/F)$
- Mixing ratio = [Partial pressure of ozone = PO3]/P(total Atm)
- Lab, field studies show that two instrument components may affect ozone measurement, lascent by 5-15%

O₃-sonde

Radiosonde

- SST = sonde solution type. KI strength, buffering, eg 0.5%, buffered; 1% buffered, 2% unbuffered, etc
- Instrument manufacturer (two "types")
- Biases characterized in "JOSIE"

& field experiments explain SHADOZ

Stratospheric biases

Re-processing SHADOZ Data Set from 1998-2013

- Done: JOSIE/BESOS led to technique changes (below)
- Result: Overall OMI-sonde total O₃ agreement ~5%, 2005-09
- Underway: "Transfer function" adopted by O3S-DQA (WMO) applied by individual Pis to "homogenize" data for trends

SHADOZ Re-processing – Iterative Process over 2-3 Years, Consultative with WMO O3-DQA

- WMO O3S-DQA, Data Quality Assurance activity, 2011-2012, convened in 3 Workshops with recommendations to "homogenize" O₃ data to compensate for biases in instrument type, SST
- Present schedule calls for SHADOZ stations to re-process in 2013.
 - NOAA/GMD stations ~50% complete
 - Asian, African, Latin American stations paired with "coaches," eg S Oltmans
- Will re-evaluate SHADOZ biases, ground-ozone/OMI comparisons
- Results to serve as guidelines for a follow-on JOSIE (2014, 2015?). Anticipate evaluation of radiosonde impacts.
- Mixing ratio = [Partial pressure of ozone = PO3]/P(total Atm)

O₃-sonde Radiosonde

- Radiosondes have changed, introducing additional source of uncertainty, eg Vaisala RS-80 to RS-92, Intermet. Modem at 2 sites
- RS-80, Intermet pressure sensors tend to read 1-2 hPa low (higher altitude at burst). May give ~20% error in ozone reading at 10 hPa

Pressure difference RS 80 vs. RS92 (Left) Pressure-GPS Offsets & O₃ Impact (Right)

THANK YOU FOR YOUR ATTENTION! Acknowledgments & References

- Support from NASA, NOAA, with JOSIE and O3S-DQA sponsored by WMO.
- T. Deshler, et al., Balloon Experiment to Test ECC-ozonesondes from Different Manufacturers, and with Different Cathode Solution Strengths: Results of the BESOS flight, J. Geophys. Res., 113, D04307, doi:10.1029/2007JD008975, 2008.
- H. G. J. Smit et al, Assessment of the performance of ECC-ozonesondes under quasi-flight conditions in the environmental simulation chamber: Insights from the Jülich Ozone Sonde Intercomparison Experiment, *JGR*, 112. D19306, doi: 10.1029/ 2006JD007308, 2007.
- A. M. Thompson et al, Southern Hemisphere ADditional Ozonesondes (SHADOZ) 1998-2000 tropical ozone climatology. 1. Comparison with TOMS and ground-based measurements, *JGR*, 108, 8238, doi: 10.1029/ 2001JD000967, 2003.
- A. M. Thompson, et al., Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2004 tropical ozone climatology. 3. Instrumentation, station variability, evaluation with simulated flight profiles, *JGR*, 112, D03304, doi: 10.1029/ 2005JD007042, 2007.
- A. M. Thompson et al., SHADOZ (Southern Hemisphere Additional Ozonesondes) ozone climatology (2005-2009): Tropospheric and lower stratospheric profiles with comparisons to OMI-based ozone products, JGR, 117, D23301, doi: 10.1029/2011JD016911, 2012.

Extras

SHADOZ BIASES Compared to UV Photometer & JOSIE-2000 Chamber Tests

Above – Ascen/Natal & Pac differences Right -- JOSIE-2000 explains Nairobi. Results appear consistent with JOSIE-2000 strat. Ozone biases

Methods tested:	Buffer	Instrument
(1) NOAA/CMDL = Fiji, Samoa, San Cristöba	al No	SPC
(2) NASA/WFF = Ascension/Natal	Yes	SPC
(3) MeteoSwiss/Payerne = Nairobi	Yes	SPC & Ensci

Looking Forward. New Technical Issues

- Background Current (Voemel & Diaz, 2009; Stuebi & Levrat, 2009). Implication for SHADOZ at certain sites. Solomon et al. 2005, Left*
- New Radiosondes (RS80-> RS92->Imet). Pressure offsets! Right
- Third instrument type. SPC stable, ENSCI-> DMT ? TBDI!

SHADOZ Tropical Climatology Illustrates Bias at Individual Stations – Thompson et al., JGR, 2007 Individual stations show bias in 0.25km Tropical Mean Profile & Constant Mixing Ratio lines stratospheric profile compared to Oppmy 12 ppmv SHADOZ tropical mean. 10 Nairobi relatively high. Interpret in terms of JOSIE-2000 lab tests? 100 Nairobi (1998-2002) 1000 5 15 0 Strat Bias, Ozone [mPa] Nairobi (1998-2002) > 100 hPa

Current Status. SHADOZ Biases due to Solution, Instrument Type, PCF Characterized.

- In T07 (not shown) mean total ozone offset relative to *TOMS*
 10 stations ~7% low, range 1-11% low
- In T12 (left, center), "re-processing" eliminated Paramaribo offset; 13-site mean offset < 5% relative to *OMI*. Hanoi, KL, Watukosek largest (low sonde) offset (right). Unknown cause.

Three Distinct Regions: W Pacific, 'Equatorial Americas', Atlantic GWI = Convective Proxy, Declines West to East. Pollution Increases West to East

Property	Kuala	San Cris.	Ascen.	
	Lumpur			
T'pause Altitude	16.6 km	16.6 km	16.0 km	
5-12 km Mean Mixing Ratio	36 ppbv	48 ppbv	64 ppbv	
Mean GWI [arbitrary unit]	19.4	12.6	8.35	

SHADOZ Schedule 2013-2016 - Deadlines & Deliverables

Timeline	SHADOZ PI, Collaborator/Partner Activities for O3S- DQA & SI2N	Deliverables, Reporting & Publications			
April 2012	Sonde Technical Issues in O3S-DQA, Greenbelt Workshop, attended by PI, NASA, NOAA collaborators and Members of the WMO Ozone SAG	 Processing with first set of Transfer Functions by SHADOZ volunteers. O3S-DQA Report to SI2N Workshop, Columbia, MD. 			
June – Dec. 2012	 Preliminary data re-processing at selected stations Transfer function implementation. Re-process SHADOZ data set for stations with instrument, sensor solution changes. Optimize background current correction. (First scheduled: Fiji, Samoa, San Cristóbal) 	AGU Special Session on O3S-DQA and related sonde technical results: Dec. 2012, San Francisco			
Jan. – June 2013	Workshop, O3S-DQA Report, Publication preparations for SI2N and UNEP/WMO 2014 Assessment deadline.	 SHADOZ Deliverable: O3S-DQA Report(s). SHADOZ PI, Collaborators submit 1 or more journal articles for publication. 			
June – Dec. 2013	Workshop: (1) evaluate Transfer Function and other reprocessing changes on SHADOZ dataset; (2) Assess needs and protocol for Tropical-JOSIE to be conducted in 2014-2015.	Re-process all SHADOZ datasets (V06) for self- consistency within given station. Apply Transfer Function as needed.			
Jan. 2014 – Dec. 2015	Review Results at WMO-sponsored Workshop.	Conduct Tropical-JOSIE at WCCOS, Jülich.			
Jan. – Dec. 2016	Report at Quadrennial Ozone Symposium.	 Reprocess & homogenize the 1998-2015 SHADOZ Data. Prepare publication(s) for 2018 UNEP/WMO Ozone Assessment. 			
Timeline	SHADOZ Statistical Analyses, Classifications with LID & SOM, Interannual Variability & Trends	Deliverables, Reporting & Publications			
2013 – 2014	 Classified profiles on SHADOZ website or link Comparisons of LID & SOM for Ascension, Natal, Irene 	Prepare journal article, 2014			
	SHADOZ comparisons with TES	Prepare journal article, 2015			
2014 2015	Classified profiles for KL, Hilo, Nairobi, Samoa				
	Analyze reprocessed, homogenized data for climate signals,	Prepare journal article, 2016			

2013: Initial Re-Processing.

Re-analyze (1) Total Ozone Comparisons

(2) TropicalStratosphericOzone biases

? Write up for SI2N 6/13, UNEP Deadlines

NEXT STEPS?

Column integral [DU] up to burst «ARTIFACT» CHANGE IN NAIROBI!

Balloon column [DU]

