

PICARRO

Updated Estimates of California's Urban and Rural Methane Emissions

Marc Fischer¹, Seongeun Jeong¹, Elena Novakovskaia², Arlyn E. Andrews³, Laura Bianco^{3,4}, Heather Graven⁵, Ying-Kuang Hsu⁶, Sally Newman⁷, Patrick Vaca⁶, Aaron Van Pelt⁸, Ray Weiss⁵, and Ralph Keeling⁵

¹Environmental Energy Technologies Division, Lawrence Berkeley National Lab, Berkeley, CA, USA;
 ²Earth Networks, Inc., Germantown, MD, USA;
 ³Earth System Research Laboratory, NOAA, Boulder, CO, USA;
 ⁴Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA;
 ⁵Scripps Institution of Oceanography, University of California, San Diego, CA, USA;
 ⁶California Air Resources Board, 1001 "I" Street, Sacramento, CA, USA;
 ⁷Caltech, Pasadena, CA, USA; and ⁸Picarro Inc., Santa Clara, CA, USA

Outline

- Introduction to California Methane Emissions
- Multi-tower Inverse Model Approach
- Summer 2012 Methane Emissions
- Conclusions

Introduction

- California's greenhouse gas (GHG) control legislation (AB-32) offers a test case where current methane (CH₄) emissions are ~1.5 Tg CH₄/yr (~ 6% of total GHG)
- CH₄ inventory uncertainties are large and industrial/biological sources are not readily metered
- Atmospheric inversion provides an independent check
- We present an inverse analysis of CH₄ emissions across CA using a 9site network of measurements during June – August, 2012

Approach

Bayesian Inverse Modeling Framework

Bayesian Inversion Schemes for surface flux, s

1. 0.1 degree Region-based Bayesian Inversion: $s = \lambda s_p$ [Jeong et al., 2012a; 2012b]

 $y = Hs_p\lambda + v$ $\hat{\lambda} = \left(K^T R^{-1} K + Q_\lambda^{-1}\right)^{-1} \left(K^T R^{-1} y + Q_\lambda^{-1} \lambda_p\right)$

2. 0.3 degree Pixel-based Bayesian Inversion: [Tarantola, 1987] $J_{s} = \frac{1}{2}(y - Hs)^{T}R^{-1}(y - Hs)$ $+ \frac{1}{2}(s - s_{p})^{T}Q^{-1}(s - s_{p})$ $\hat{s} = s_{p} + QH^{T}(HQH^{T} + R)^{-1}(y - Hs_{p})$

y: measurement – background H: footprint s_p : prior emission s: state vector for surface flux λ : state vector for regions/sources R: model data mismatch covariance Q_{λ} : prior covariance for λ Q: prior covariance for s λ_p : prior for λ ν : error ~ N (0, **R**)

K=H s_n

Prior CH₄ Emission Model - CALGEM

(available at calgem.lbl.gov)

CALGEM Total CH₄ Emissions

Emission Regions for Inversion

SoCAB

Meteorological Model for California

- Simulate meteorology for summer 2012 using Weather Research and Forecasting (WRF) Model:
 - North American Regional Reanalysis (NARR) boundary and initial conditions
 - 6-hour spin-up [Jeong et al., 2012a, JGR]
 - Two-way nesting with four nest levels (five domains)
 - 4-km domain covers most of California
 - 5-layer thermal diffusion land surface scheme (LSM)
 - MYJ Planetary Boundary Layer (PBL) scheme

Domain Configuration for WRF

Transport Model Simulations

- Stochastic Time-Inverted Lagrangian Transport (STILT) model is used to simulate backward trajectories
 - Footprints are calculated based on 7-day backward trajectories
- Multiple towers improve sensitivity over the Central Valley and the Southern California air basin (SoCAB)
- CH₄ background values are estimated using NOAA curtain and particle trajectories (e.g. Jeong et al., 2012b)

Mean Afternoon Footprints (June 2012)

Uncertainty Analysis for Inversion

PBLH (m)

WRF

000

2500

2000

- Estimate uncertainty for each site and by error source (e.g., mixing depth, background)
- Quadrature sum of uncertainty vary by GHG measurement site: 30
 - 80% of mean measured signal

Wind Profiler Measurement Sites

Hour (PST)

Model Measurement Comparison

Summer 2012

- Before inversion, CALGEM predicted 3hr averaged well-mixed CH₄
 ~70% of measurements before optimization
- After inversion, residual error reduced ~ 33%
- EDGAR42 prior almost certainly overestimates SoCAB CH₄ emissions

Region-based Bayesian Inversion

- Significant error reductions both in the Central Valley (Reg. 3 & 8) and in SoCAB (Reg. 12)
- CA total emissions (2028±91 Gg CH₄ yr⁻¹ or 1.3±0.1x CARB inventory) are consistent with previous studies [Jeong et al. & Santoni et al., in review]
- Higher emissions in the Central Valley (1319±53 Gg CO₂eq) than the prior, consistent with previous studies
- Lower emissions in SoCAB partially explained by decline in dairy cows in SoCAB

Pixel-based Bayesian Inversion

- Preliminary results show consistent emissions with region-based Bayesian analysis: CA total CH₄ = 1830±120 Gg CO₂eq/yr or 1.2±0.1 times CARB inventory
- Estimate higher emissions in the Central Valley and lower emissions in SoCAB than CALGEM prior
- Comparison with previous studies
 - CA total: consistent with Jeong et al. [in review] and Santoni et al. [in review]
 - SoCAB (270±33 Gg CH₄): consistent with Santoni et al. [in review], but lower than CO-based estimates (e.g., Wennberg et al., 2012; Peischl et al., 2013)

Conclusions

- Bayesian Inverse modeling using a network of measurements across California constrains a significant portion of emission regions (>90% of total emissions)
- Two Bayesian inversions suggest State total emissions are 1.1-1.4 times CARB total CH₄ emissions
 - Actual CH₄ emissions are higher in the Central Valley and likely lower in SoCAB than the CALGEM prior
- A full annual analysis will make a significant process in constraining California CH₄ emissions towards AB-32
- Attribution to source sectors using additional trace gas species will improve estimate of California total emissions