Regional emission estimates of selected anthropogenic greenhouse gases (HFC-134a, HCFC-22 and CH₄) from California

Lei Hu^{1,2}, Stephen A. Montzka¹, Arlyn E. Andrews¹, Lori Bruhwiler¹, Benjamin R. Miller^{1,3}, Huilin Chen^{1,3,4}, Kenneth Masarie¹, Andy Jacobson¹, Ed Dlugokencky¹, Paul Novelli¹, Marc L. Fischer⁵, Eri Saikawa⁶, James W. Elkins¹, and Pieter Tans¹

¹NOAA Earth System Research Laboratory, Global Monitoring Division, Boulder, Colorado, USA
 ²Research Associateship Programs, National Academy of Sciences, Washington D.C., USA.
 ³Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
 ⁴Center for Isotope Research, University of Groningen, Groningen, The Netherlands
 ⁵Atmospheric Science Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, California, USA
 ⁶Department of Environmental Studies, Rollins School of Public Health, Emory University, Atlanta, GA, USA

Global Monitoring Annual Conference, May 21 - 22, 2013

Motivation

- Increasing atmospheric burdens of greenhouse gases (GHGs)
- Reducing GHG emissions
- > Evaluating the degree to which GHG emissions have been reduced

To provide accurate emission estimates
To assess various "top-down" approaches

Outline

- Surface flask sites
- Emission estimates using a CO-based tracer ratio method
- Further constrain fluxes using a Bayesian inversion
- Summary for our preliminary findings

Surface flask sites

4

A CO-based tracer ratio method

Enhancement:

$$\Delta_{obs} = \chi_{obs} - \chi_{bkg}$$

Emissions of a trace gas (x):

$$E_{x} = E_{CO} \times \frac{\Delta_{x}}{\Delta_{CO}}$$

Many studies have used this method, but with different details!

e.g. Li et al. (2005), Reimann et al (2005), Hurst et al. (2006), Yokouchi et al. (2006), Millet et al. (2009), Barletta et al. (2011, 2013), Wennberg et al. (2012)

Multiple approaches were considered and evaluated in the study

Background (χ_{bkg}) :

- (1) The 10th percentile of surface data at three sites (e.g. Millet et al., 2009)
- (2) Marine background reference (Masarie and Tans, 1995)
- (3) "Background curtain" + air back-trajectories (Andrews et al., in prep.)

Three-monthly enhancement ratios (ER, Δ_x/Δ_{co}):

- (1) An orthogonal distance regression (e.g. Hurst et al., 2006; Barletta et al., 2011, 2013)
- (2) A median ratio approach (e.g. Miller et al., 2012)

Estimating a state-wide emission:

<u>Approach (1)</u>: ER × CO inventory (e.g. Yokouchi et al. 2006; Wennberg et al. 2012) (a) <u>ER= ER(STR)*0.25+ER(WGC)*0.25+ER(MWO)*0.5</u>

(b) $ER_{i,j} = \sum_{s=1}^{3} f_{i,j,s} \bullet ER_s / \sum_{s=1}^{3} f_{i,j,s}$ (s= site index; i,j=indices of latitudes and longitudes; f=footprints)

Approach (2): Per capita flux (PCF) × population (e.g. Li. et al. 2006, Hurst et al., 2006; Barletta et al, 2011, 2013)

(a) PCF= PCF(STR)*0.25+PCF(WGC)*0.25+PCF(MWO)*0.5

(b)
$$PCF_{i,j} = \sum_{s=1}^{3} f_{i,j,s} \bullet PCF_s / \sum_{s=1}^{3} f_{i,j,s}$$

Three-monthly enhancement ratios at three sitesHFC-134aHCFC-22CH4

Emission Estimates

Solid lines: ODR Dash lines: Median Ratios

Approach 1a): ER × CO inventory, no footprint

Approach 2a): PCF x Population , no footprint

Approach 1b): ER × CO inventory, with footprint

Approach 2b): PCF × population, with footprint

Further constrain fluxes using a Bayesian inversion

Prior and posterior fluxes

Comparison with a state inventory and other studies

Preliminary findings

- Large difference was observed in emissions estimated with an ODR and a median ratio approach.
- Emissions of HFC-134a and HCFC-22 from California during 2010 – 2012: 4.2 (± 2.3) Gg/y and 6.5 (± 2.3) Gg/y (we need to relook at the results after considering transport errors and using different transport)
- Seasonality for emissions of HFC-134a and HCFC-22 from California: higher in summer than in winter.
- CH₄ emissions from California, estimated with a CO-based tracer ratio method: 2.5 (1.8 – 3.2) Tg/y, about 1.2 – 2.1 times a state inventory (concerns: emissions of CH₄ and CO are not col-located; more work is needed to evaluate this approach).

A median emission ratio approach could be more capable of characterizing "far-field" emissions relative to an orthogonal distance regression.

