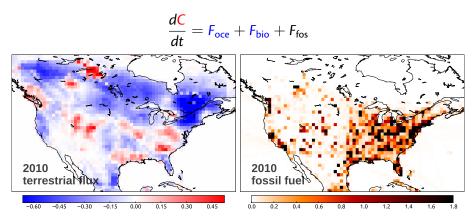
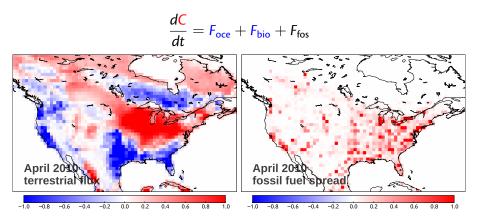
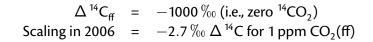
Constraining fossil fuel CO_2 emissions by the joint assimilation of atmospheric CO_2 and ¹⁴ CO_2 measurements

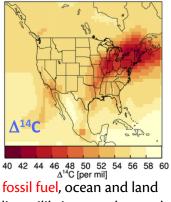
Sourish Basu, John Miller, Scott Lehman



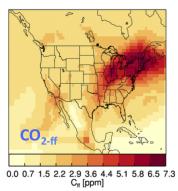

GMD Annual Conference Boulder, May 2014

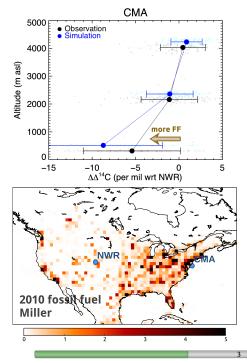
 Almost all atmospheric CO₂ inversions assume CO₂(ff) "perfectly" known, solve for natural fluxes What is the issue?

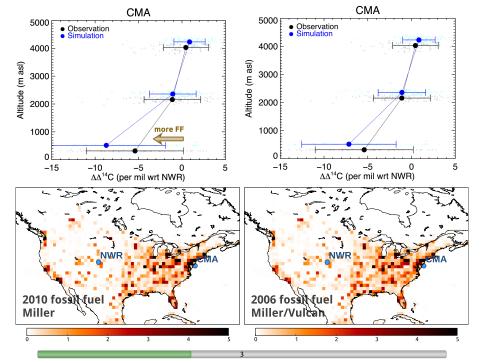




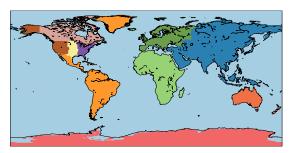
- Almost all atmospheric CO₂ inversions assume CO₂(ff) "perfectly" known, solve for natural fluxes
- Only true annually, for global and (some) national totals
- Usually not up to date, EDGAR 5 yr old, Vulcan 13 yr old


 $^{14}CO_2$ is a tracer for $CO_2(ff)$

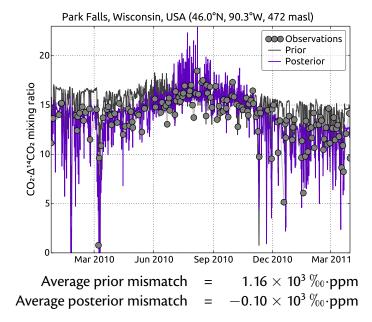




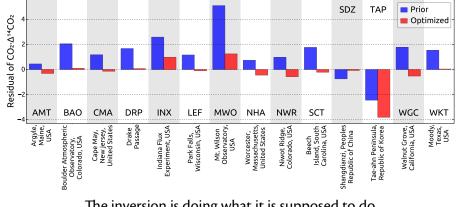
disequilibrium, nuclear and cosmogenic production


fossil fuel only

Prior flux uncertainties

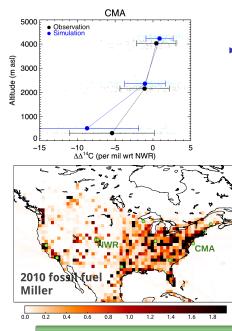

- US CO₂(ff): 5.26 ± 0.26 Pg CO₂
- Fossil fuel: 2.5 × inter-prior spread, 700 km hybrid, 3 month

- Land biosphere: 0.25 imes respiration per grid cell, 200 km (e), 1 month
- Ocean: 157 × abs(net flux), 1000 km (e), 3 month
- Ocean disequilibrium: 0.2 imes abs(net flux), regional, 3 month
- Land disequilibrium: 0.1 imes abs(net flux), regional, 1 month


Our measurements are CO_2 and $CO_2 \cdot \Delta^{14}CO_2$

Model-observation mismatch of $CO_2 \cdot \Delta^{14}CO_2$

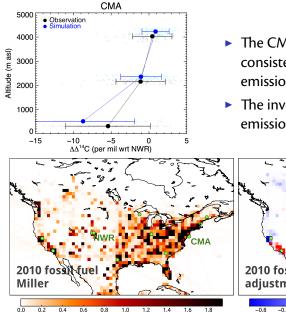
Model-observation mismatch of $CO_2 \cdot \Delta^{14}CO_2$

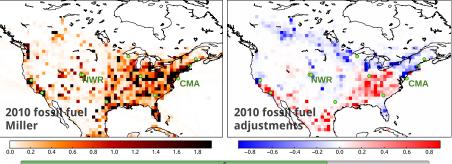


1018

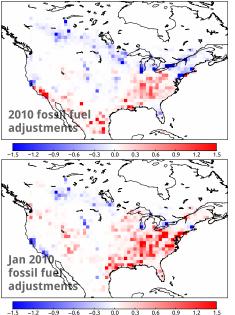
The inversion is doing what it is supposed to do

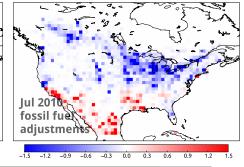
Adjustments to fluxes/optimized emissions




 The CMA-NWR gradient is consistent with more CO₂(ff) emission inland

Adjustments to fluxes/optimized emissions



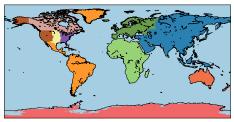

- The CMA-NWR gradient is consistent with more $CO_2(ff)$ emission inland
- The inversion increases CO₂(ff) emission inland

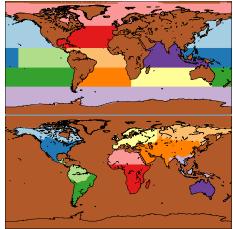
Seasonal vs annual CO₂(ff) adjustments

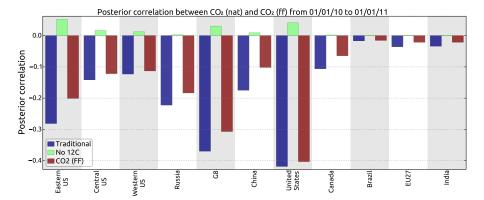
- Adjustments at the monthly scale are larger than adjustments at the annual scale
- Spatial patterns of the two adjustments can be different

- Fossil fuel CO₂ "well known" at national/yearly scales, not at regional/monthly scales
- Errors in CO₂(ff) emission estimates cause errors in NEE estimates

- Fossil fuel CO₂ "well known" at national/yearly scales, not at regional/monthly scales
- Errors in CO₂(ff) emission estimates cause errors in NEE estimates
- ¹⁴CO₂ is a good tracer for CO₂(ff), can disentangle CO₂(total) from CO₂(ff)
- Even with \sim 55 times lower measurement density, ¹⁴CO₂ measurements in a CO₂ + ¹⁴CO₂ inversion shifts emission of CO₂(ff) inland, as expected


- Fossil fuel CO₂ "well known" at national/yearly scales, not at regional/monthly scales
- Errors in CO₂(ff) emission estimates cause errors in NEE estimates
- ¹⁴CO₂ is a good tracer for CO₂(ff), can disentangle CO₂(total) from CO₂(ff)
- Even with \sim 55 times lower measurement density, ¹⁴CO₂ measurements in a CO₂ + ¹⁴CO₂ inversion shifts emission of CO₂(ff) inland, as expected
- Very much a work in progress, not yet the optimal framework for utilizing ¹⁴CO₂ measurements


$$\begin{aligned} \frac{d\mathsf{C}}{dt} = &F_{\text{oce}} + F_{\text{bio}} + F_{\text{fos}} \\ \frac{d}{dt} \left(\mathsf{C} \cdot \Delta_{\text{atm}}\right) = &\Delta_{\text{fos}}F_{\text{fos}} + \Delta_{\text{atm}} \left(F_{\text{oce}} + F_{\text{bio}}\right) \\ &+ &\Delta_{\text{oce}}F_{\text{oce} \to \text{atm}} + \Delta_{\text{bio}}F_{\text{bio} \to \text{atm}} \\ &+ &\alpha \left(F_{\text{nuc}} + F_{\text{cosmo}}\right) \end{aligned}$$


tracers transported fluxes estimated

- US CO₂(ff): 5.26 \pm 0.26 Pg CO₂
- Land biosphere: 0.25 × respiration per grid cell, 200 km (e), 1 month
- Ocean: 157 × abs(net flux), 1000 km (e), 3 month
- Fossil fuel: 2.5 × inter-prior spread, 700 km hybrid, 3 month

- Ocean disequilibrium: 0.2 × abs(net flux), regional, 3 month
- Land disequilibrium: 0.1 × abs(net flux), regional, 1 month

1011