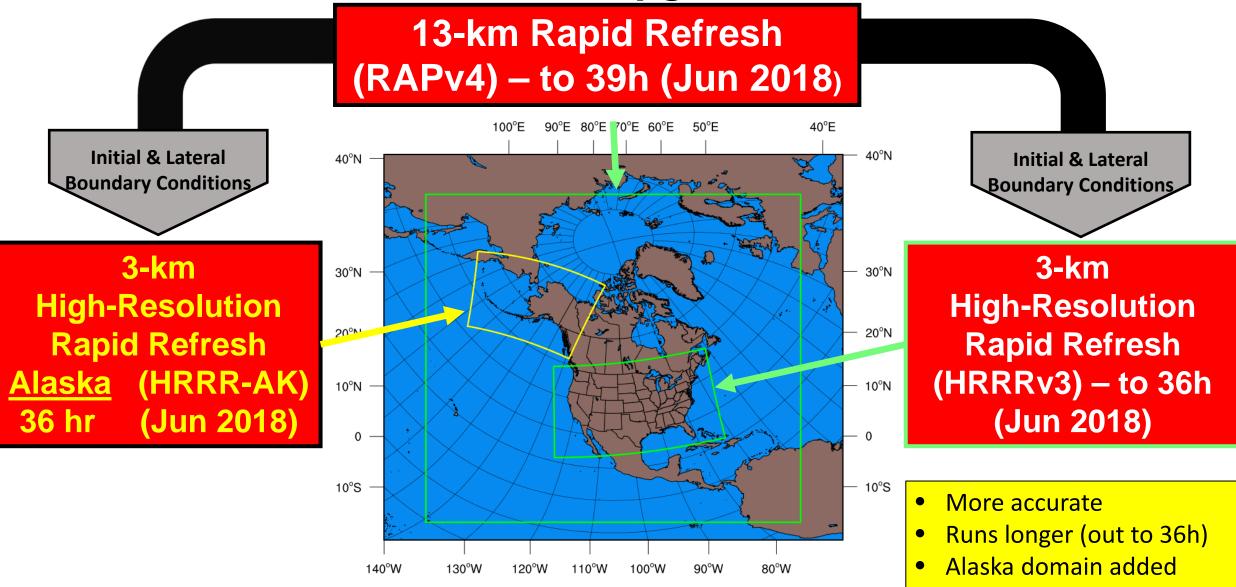

Sub-Grid (Unresolved) Clouds



2018 GMAC Boulder, CO GMD, GSD Use of radiation / cloud observations to reduce cloud-radiation model errors from 4-h to 4-week forecasts Stan Benjamin

Joseph Olson, Tanya Smirnova, Shan Sun, Allison McComiskey, Kathy Lantz, Chuck Long, Curtis Alexander, Georg Grell NOAA Earth System Research Laboratory, Boulder, CO USA

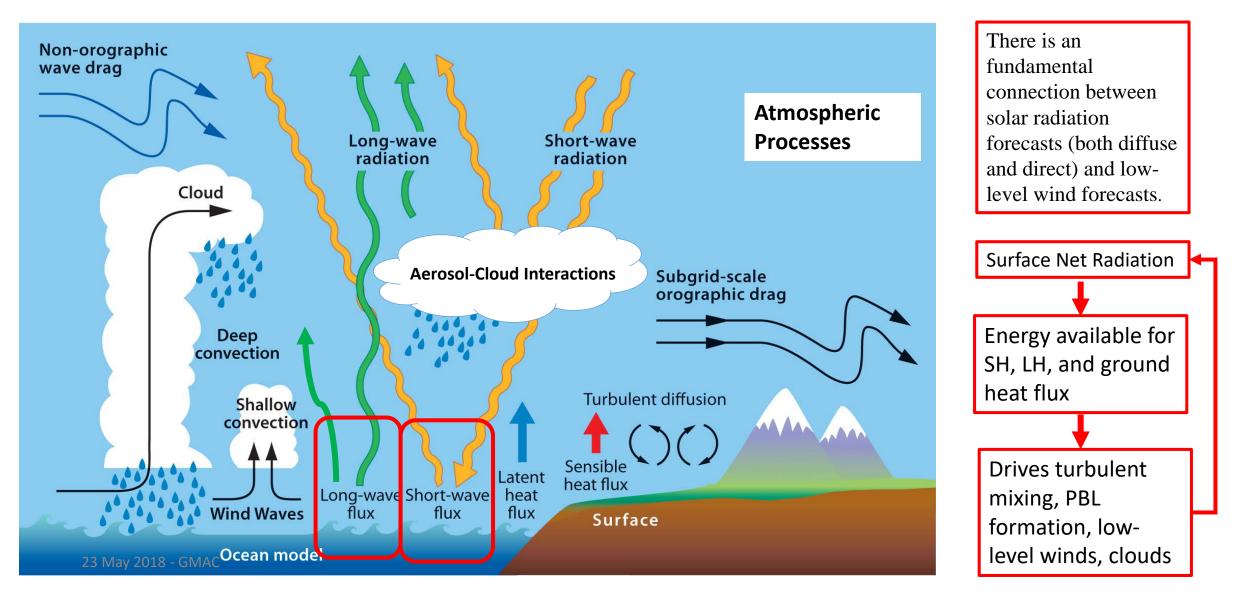
RAP/HRRR: Hourly-Updating Weather Forecast Suite

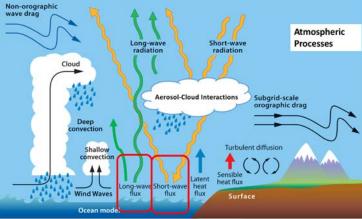
- June 2018 NOAA/NCEP upgrade

Unified model development in NOAA/ESRL

(ESRL divisions: GSD with PSD/GMD/CSD), NCEP, NCAR, etc.)

Spatial resolution Forecast range Domain	3km 1-36h Regional	13km 1-39h Regional	10-15km 1-10 day Global	15-30km Week 2 – 9 month Global
Model development area	HRRR (High-Resolution Rapid Refresh model) –	RAP (Rapid Refresh)	NGGPS – FV3 (current physics testing with FIM and FV3)	FIM-HYCOM coupled seasonal (for NOAA SubX experiment, switch to FV3)
Data assimilation	Radar/cloud/surface/land, 3km ensemble DA	⇒	4D Ensemble DA (Whitaker-PSD, EMC)	
Dynamic core numerics	Use/refinement of WRF-ARW, <pre> hybrid vert coordinate </pre>	→	FV3 – cubed sphere, FIM - icosahedral	⇒
Physical parameterization	PBL/MYNN, cloud microphysics (Thompson), RUC land-surface,	Same as HRRR but with Grell-Freitas scale-aware cumulus	GFS physics + Grell- Freitas cu. Testing of HRRR/RAP suite-2017	GFS physics + Grell-Freitas cumulus. Test HRRR suite starting late 2017.
Application of inline chemistry	2-aerosol – NCEP, testing of 18- aerosol	" + gas-phase chemistry	18-aerosol and gas- phase chem	18-aerosol only so far
Systematic error investigations	Clouds, precipitation	Clouds	Clouds, blocking, precipitation	Clouds, blocking, precipitation
	HERRX 04/18/2016 (01:00) 11h lcst - Experimental Valid 04/18/2016 11h Total Precip (in), MSI	2:00 UTC .P (mb)		

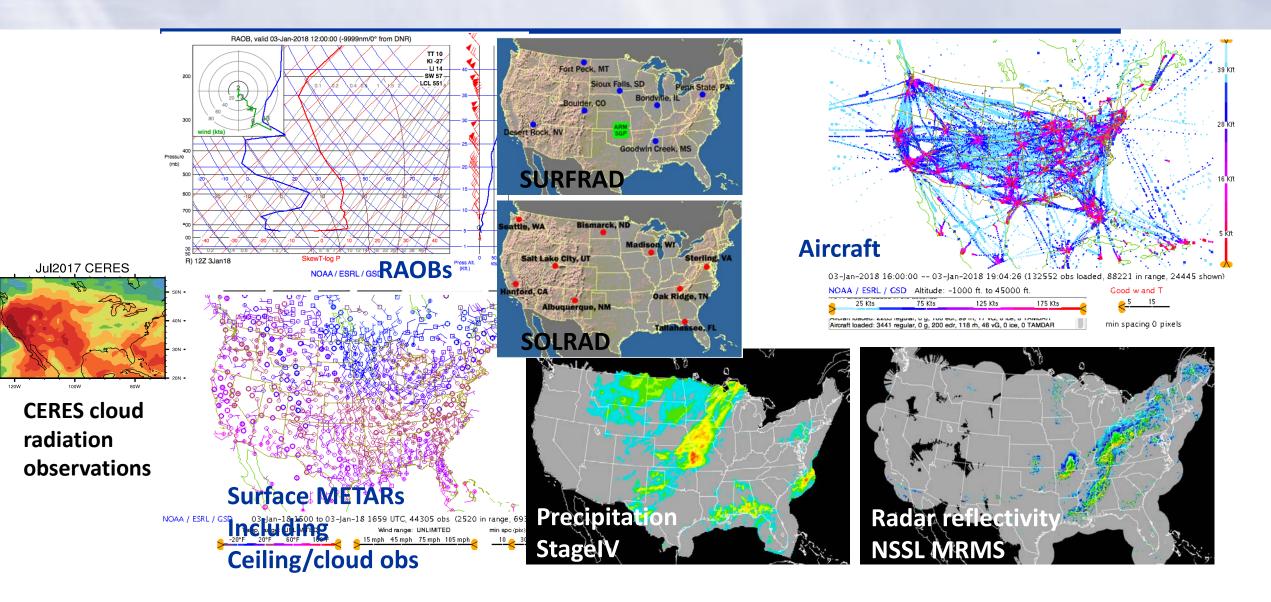

HRRR Users and Applications

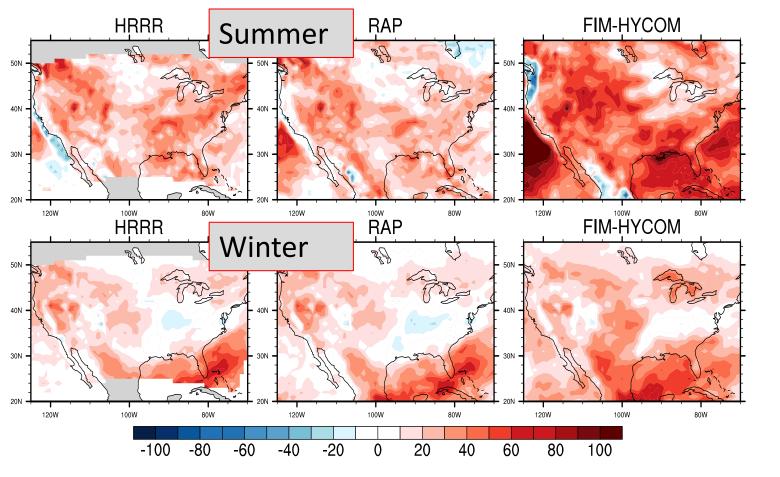

Example: National Weather Service including Storm and Weather Prediction Centers (SPC and WPC) Aviation Weather Center (AWC) and FAA Command Center National Severe Storms Laboratory (NSSL) and Air Resources Laboratory (ARL) National Centers for Atmospheric Research (NCAR) and Lincoln Laboratory (LL)

g		
Energy (wind/solar) Decision Support	Renewable Energy (wind/solar) Day-Ahead Decision Support	
Severe Weather -Watches, Convective Outlooks	Severe Weather Day 2 Outlooks	
	Heavy rainfall/snowfall Day 2 Outlooks	
Aviation Strategic Planning		
	Energy (wind/solar) Decision Support Severe Weather -Watches, Convective Outlooks Heavy rainfall/snowfall watches, National Water Model Aviation Strategic	Energy (wind/solar) Decision SupportRenewable Energy (wind/solar) Day-Ahead Decision SupportSevere Weather -Watches, Convective OutlooksSevere Weather Day 2 OutlooksHeavy rainfall/snowfall watches, National Water ModelHeavy rainfall/snowfall Day 2 OutlooksAviation StrategicStrategic

23 May 2018 - GMAC

Atmospheric process representation Rathy Lantz - GMD necessary for weather prediction (incl. HRRR/RAP)

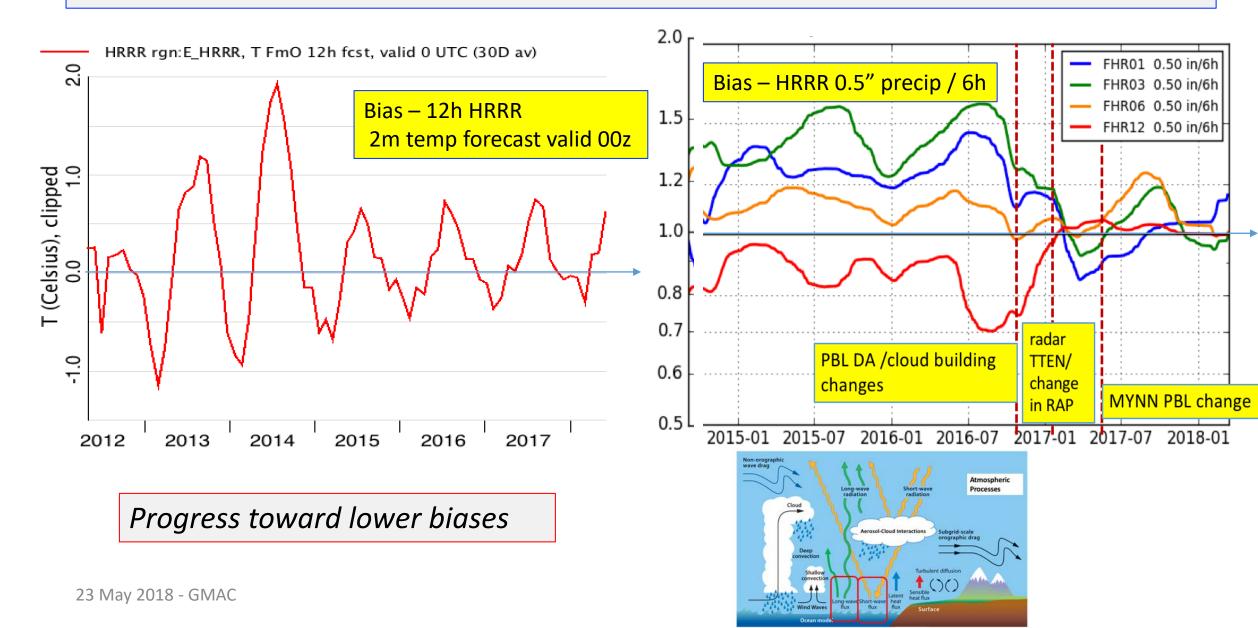




RAPv4/ HRRRv3 Summary of Changes

8	Model	Run at:	Dom	ain I	Grid oints	Gr Spac	-	Verti Leve		Vert Coord		Pressu Top	-		ndary litions	Init	ialized
	RAP	GSD, NCO	Nor Ame		953 x 834	13	km	50		Sigma Hyb		10 m	b	G	iFS		ourly ycled)
	HRRR	GSD, NCO	CON		799 x 1059	3 k	m	50		Sigma Hyb		20 m	b	R	AP	forec	rly (pre- ast hour ycle)
	Model	Versio	n	Assi	milatio	n	Rada	ar DA		iation //SW	-	oud physics	Cum Para		Turb /PBL		and-sfc cheme
	RAP	WRF-AF v3.8.1		GSI Ensem	Hybrid ble to (ກ DFI, າin LH		rmg/ Tmg		npson ol v3.8.1	GF Shal		MYNN v3.8.1 EDMF/	, 2n	RUC v3.8.1, nT/snow, mosaic
	HRRR	WRF-AF v3.8.1		GSI Ensem	Hybric ble to (_	km nin LH		ГМG/ TMG		npson ol v3.8.1	No	ne	MYNN v3.8.1 EDMF/	, 2n	RUC v3.8.1, nT/snow, mosaic
	Model	Horiz/Ver Advectio		calar vection	Upper Dam			fusion ption	-	^h Order iffusion	-	Radiation pdate	Lan	d Use	MP To Lim		Time- Step
	RAP	5 th /5 th		sitive- efinite	w-Ray 0.	/leigh 2	Fu	ıll (2)		Yes 0.12	2	0 min	Seas	DDIS sonal, S GVF	0.01	K/s	60 s
	HRRR	5 th /5 th		sitive- efinite	w-Ray 0.	-	Fu	ıll (2)		es, 0.25 o slope		min with SW-dt	Seas	DDIS sonal, SGVF		K/s	20 s

GSD model verification vs. observations


July 2016 / Jan 2017 – **Downward SW error** – models minus from CERES (W/m², day 1)

General problem – excessive downward short-wave radiation, too little resolved and subgrid clouds

- RAP 13km
- HRRR 3km
- Global FIM/HYCOM borrows from cumulus physics for RAP (Grell-Freitas conv)
 - Part of NOAA SubX subseasonal experiment

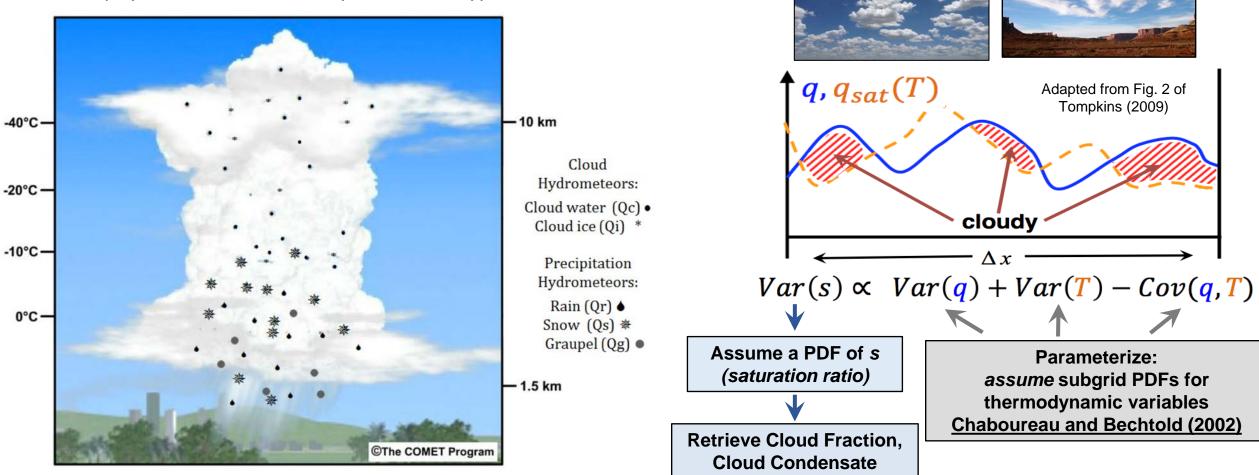
23 May 2018 - GMAC

Goal: More accurate weather guidance (via improved process understanding, modeling, assimilation)

Candidates for warm bias / too-little cloud

Model	Run at:	Domain	Grid Points	Grid Spacing	Vertical Levels	Vertical Coordinate	Pressure Top	Boundary Conditions	Initialized
RAP	GSD, NCO	North America	953 x 834	13 km	50	Sigma-Isob Hybrid	10 mb	GFS	Hourly (cycled)
HRRR	GSD, NCO	CONUS	1799 x 1059	3 km	50	Sigma-Isob Hybrid	20 mb	RAP	Hourly (pre- forecast hour cycle)

Model	Version	Assimilation	Radar DA	Radiation LW/SW	Cloud Microphysics	Cumulus Param	Turbulence PBL	Land-sfc scheme
RAP	WRF-ARW v3.8.1+	GSI Hybrid Ensemble to 0.85	13-km DFI, 20-min LH	RRTMG/ RRTMG	Thompson Aerosol v3.8.1	GF + Shallow	MYNN v3.8.1, EDMF/cl	RUC v3.8.1, 2mT/snow, mosaic
HRRR	WRF-ARW v3.8.1+	GSI Hybrid Ensemble to 0.85	3-km 15-min LH	RRTMG/ RRTMG	Thompson Aerosol v3.8.1	None	MYNN v3.8.1, EDMF/cl	RUC v3.8.1, 2mT/snow, mosaic

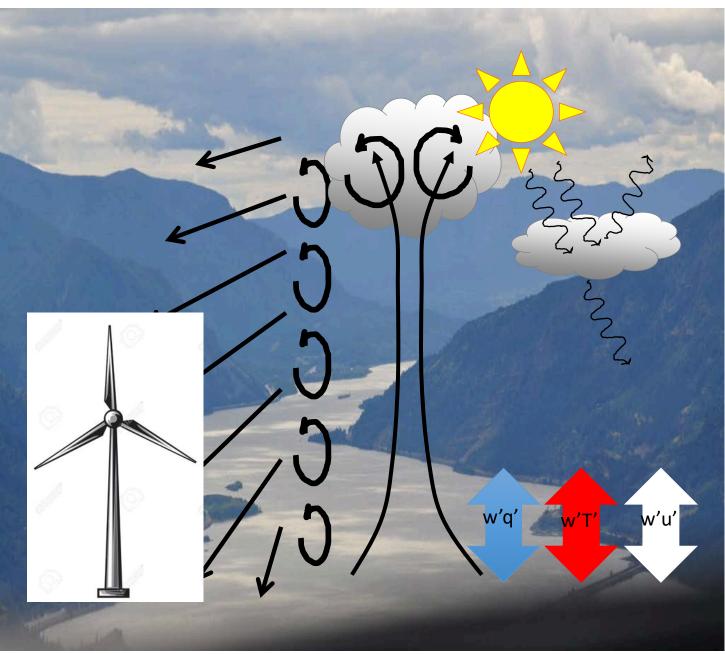

	Model	Horiz/Vert Advection	Scalar Advection	Upper-Level Damping	Diffusion Option	6 th Order Diffusion	SW Radiation Update	Land Use	MP Tend Limit	Time-Step
	RAP	5 th /5 th	Positive- Definite	w-Rayleigh 0.2	Full (2)	Yes 0.12	20 min	MODIS Seasonal, VIIRS GVF	0.01 K/s	60 s
	HRRR	5 th /5 th	Positive- Definite	w-Rayleigh 0.2	Full (2)	Yes, 0.25 no slope	15 min with SW-dt	MODIS Seasonal, VIIRS GVF	0.07 K/s	20 s
23 IVIAY 2	2018 - GMA	AC								

Physics Development Emphasis: Sub-Grid Clouds

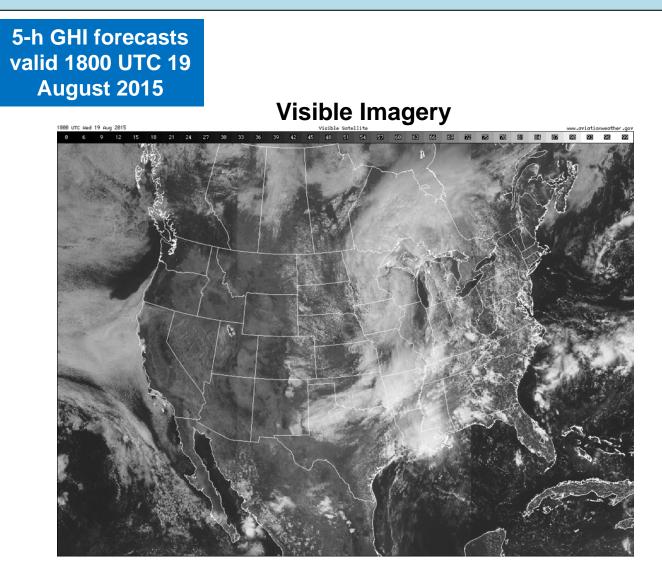
Sub-Grid (Unresolved) Clouds

Explicit (Resolved) Clouds/Precipitation

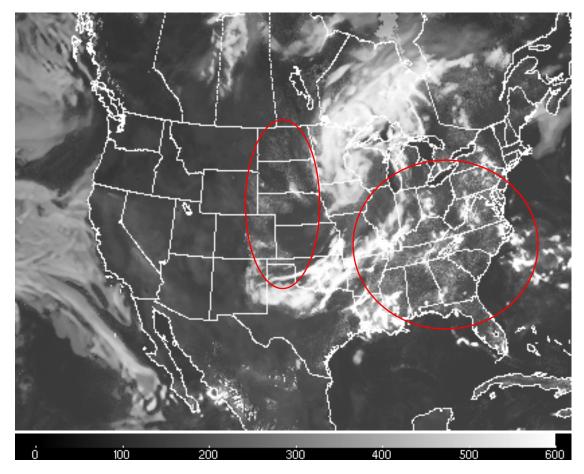
RAP and HRRR use the Thompson microphysics scheme with 5 hydrometeor types



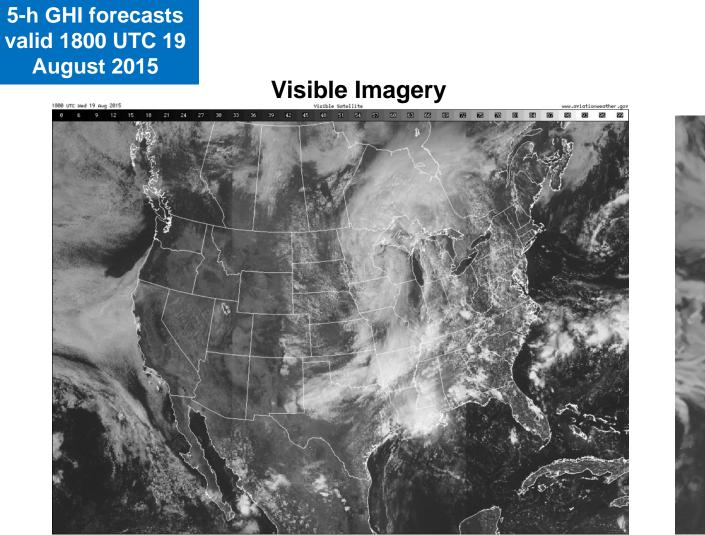
23 May 2018 - GMAC


RAPv3/HRRRv2

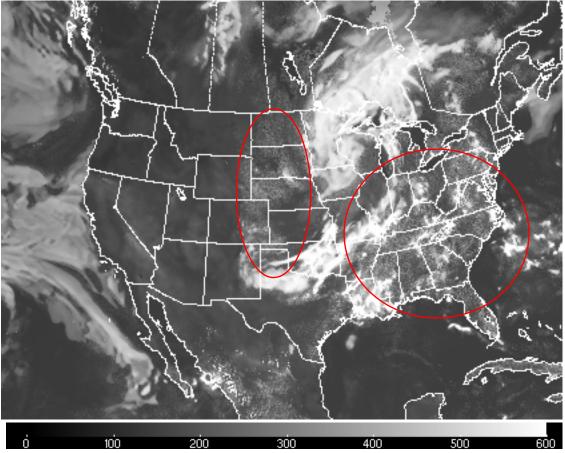
HRRR/RAP: Physical Processes and Representations

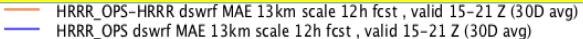

Process	Model Component	Change/Addition			
Turbulent Diffusion	MYNN PBL/ 3d-Blended TKE	 Mixing length Scale-aware Z-less 1D → 3D as f(Δx)→0 			
Non-local Turbulent Transport	MYNN Mass-flux	 Multi-plume TKE transport Momentum transport Scale-aware 			
Surface Fluxes	RUC LSM/ MYNN Sfc Layer	 Scalar roughness M-O alternatives 3D surface stress 			
Clouds	Thompson Aeroso / Chaboureau- Bechtold	 I • Subgrid scale clouds • Coupled to radiation • prognostic 			
Numerics/ Dynamics	Vertical Coordinate, Advection	 Hybrid WRF-ARW Vertical Coordinate 			
Turbine Drag 23 May	Wind Farm Parameterization	Wind direction effectsPower calculation.			

Improvements to mass-flux scheme: not enough coverage

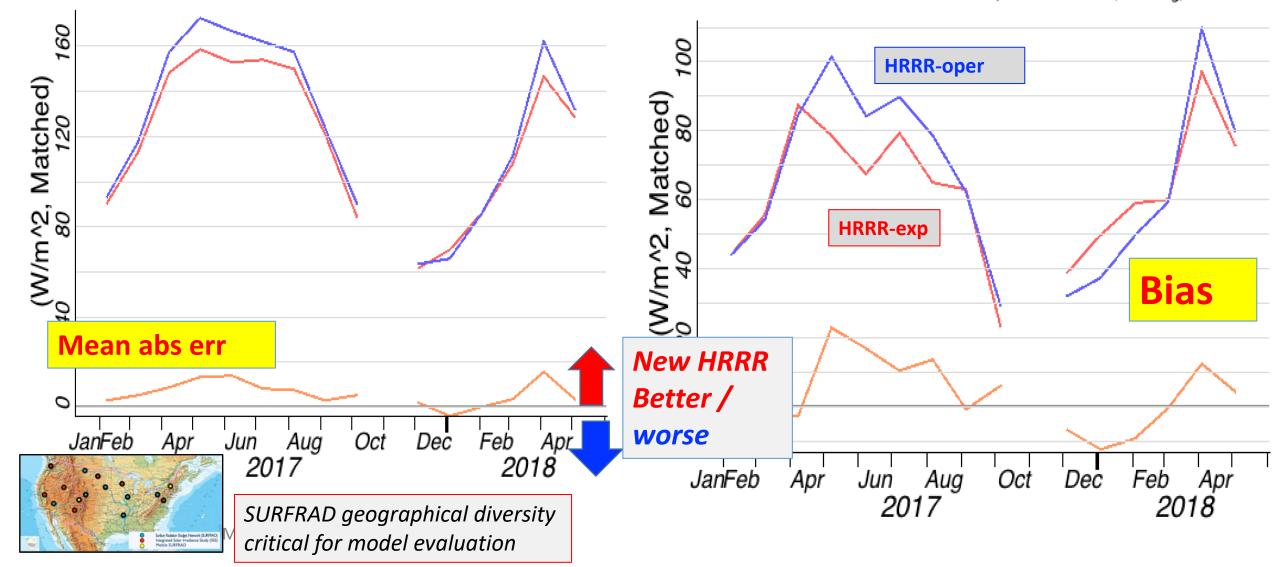


Previous version (v3.9)

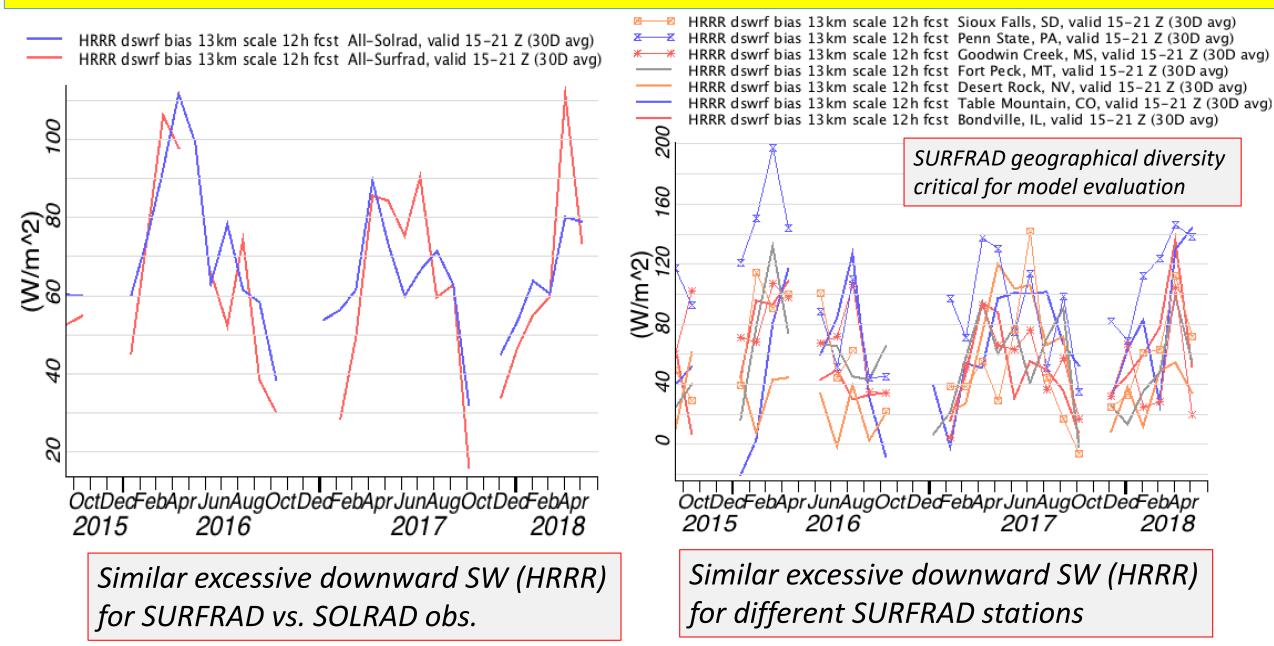



Improvements to mass-flux scheme: better

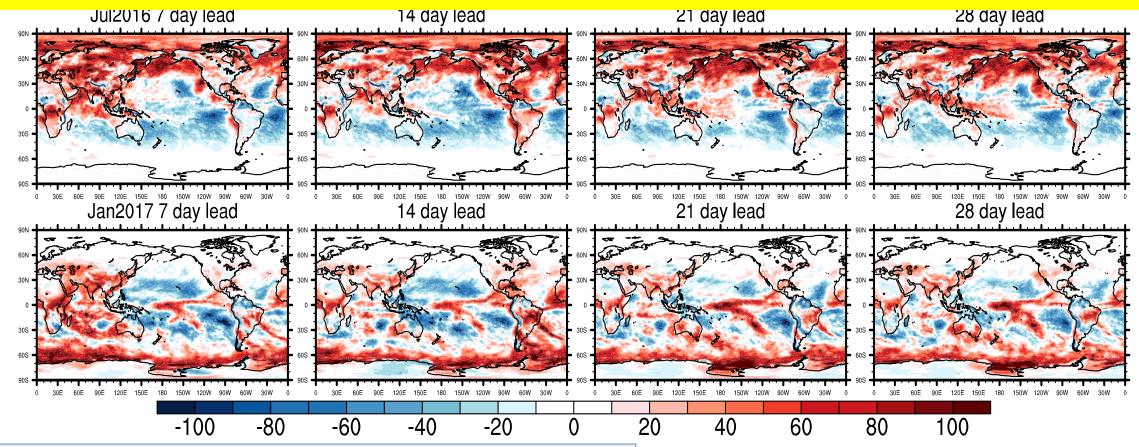
Updated Version



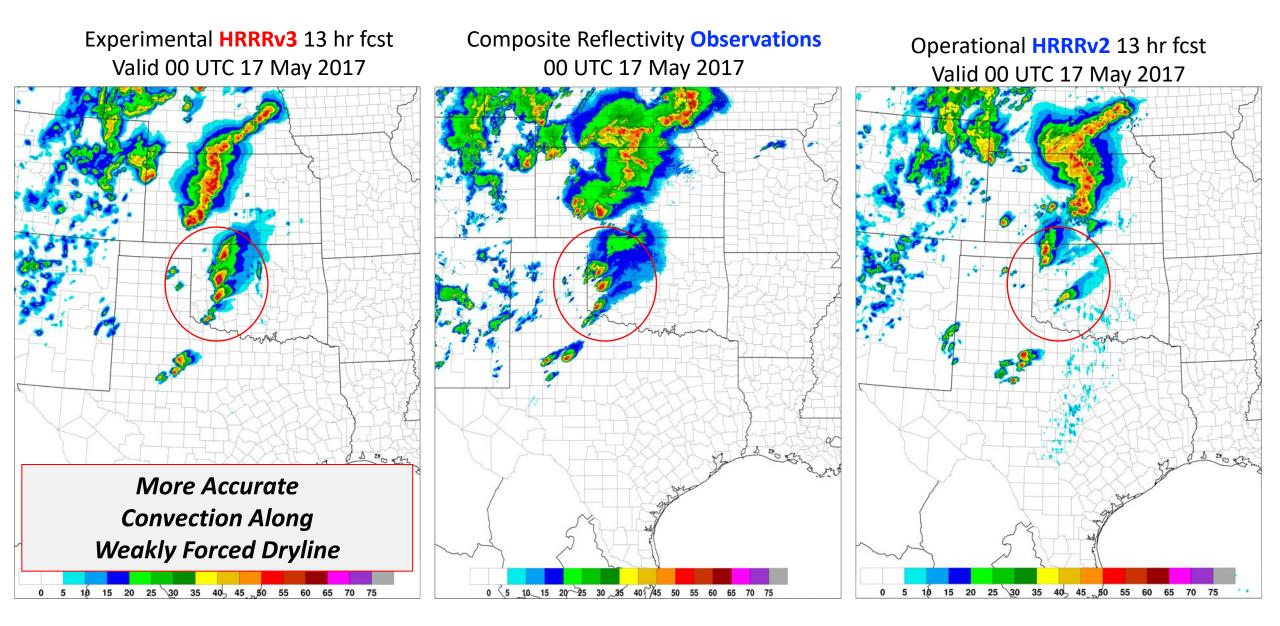
12h HRRR v2/v3 downward SW vs. SURFRAD – Mean 15-21z



HRRR dswrf MAE 13km scale 12h fcst , valid 15-21 Z (30D avg)


HRRR_OPS-HRRR dswrf bias 13km scale 12h fcst, valid 15-21 Z (30D avg)
 HRRR_OPS dswrf bias 13km scale 12h fcst, valid 15-21 Z (30D avg)
 HRRR dswrf bias 13km scale 12h fcst, valid 15-21 Z (30D avg)

12h HRRR Downward SW bias vs. SURF/SolRAD – Mean 15-21z


Downward SW radiation - FIM-HYCOM vs. CERES

FIM-HYCOM uses Grell-Freitas deep/shallow convection (same as RAP).

- Similar downward SW bias for all 4 weeks.
- Warm season: model too high SW over land, cold ocean stratocu zones, high-latitude ocean.

HRRR Improved Convective Forecasts

Reflectivity Verification

23 May 2018 - GMAC

RAPv5/HRRRv4 upcoming changes - 2020

Larger impact for wind/ solar forecast accuracy

•		ecast accuracy
Model	Data Assimilation	Land-surface / post
WRF-ARW v3.9+ incl. phys changes <i>Physics changes:</i> MYNN PBL update – yet better sub- grid clouds, improved EDMF mixing	Merge with GSI trunk – 2018 <u>New Observations for assimilation:</u> GOES-16 radiances, GLM lightning MRMS dual-polarization radar mosaics	Switch to MODIS albedo (higher), replace 1-deg albedo. Add zenith-ang albedo adj
length, goal: retaining stable layers Aerosols sources/sinks – fire/smoke, dust - Add smoke with VIIRS fire radiative power	Extra mesonet data incl. anemometer hgt TC vitals for trop cyclone location/ strength Satellite-based AOD (aerosol optical depth) Aircraft/raob moisture obs for p<300 hPa	Fractional sea/lake ice concentration ? – FVCOM SST/ice VIIRS/MODIS/GOES fire
Improved land-surface/snow model including better 2m T/Td diagnostics - no snow mosaic for T<271K	HRRR - 3km ensemble DA (40 members out to 1h) – effective in 2017/18 tests. Reduced LH for radar assim in HRRR	radiative power HRRRE prob products Full cycle RAP land-sfc
Latest Grell-Freitas conv (RAP only) Lake model for small lakes	Cloud/hydrometeor assim within ens DA DA for subgrid cloud fraction/cloud water w/ METAR, satellite cloud fraction	Enabled by GMD radiation obs
Enhanced gravity-wave drag	Revised hydrometeor assim (project to	

rocalvable scale) to improve 1h procin

RAPv4/HRRRv3 – May 2018-NCEP

Data Assimilation	Model	Land-surface/post			
<u>New Observations for assimilation:</u> Add satellite cloud-drift winds over land Add TAMDAR aircraft observations Add new polar-orbiter satellite data IASI, CrIS, SEVIRI radiances <u>Assimilation Methods:</u> Revised PBL pseudo-observations from sfc –better winds/RH Cloud building (satellite, surface) - more cloud droplets now specified	 WRF-ARW v3.8.1+ incl. physics changes <u>Physics changes:</u> Thompson cloud microphysics improved ice clouds (not excessive) MYNN PBL update – better sub-grid clouds, EDMF (local/deep) mixing Land-sfc model update mosaic snow, 2m temp diagnostic Revised Grell-Freitas cumulus (RAP) 	MODIS higher-res 15" land-use data VIIRS real-time greenness veg fraction Revised roughness leng 10m wind (not ~8m) Wind gust diag fix (stronger at night)			
Radar reflectivity assimilation - Latent heating reduced by 50% - RAP only - In HRRR – reduces too much convection	 HRRR/RAP implementations at NCEP – scheduled J 2018. Following in 2020. GMD network radiation obs critical for model improvement for NOAA RAP/HRRR/global models. 				